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Abstract

Cells are fundamental units in all living organisms as all living organisms are

made up of cells of different varieties. The study of cells is therefore an essential part

of research in life science. Cells can be classified into two basic types: prokaryotic

cells and eukaryotic cells. One typical organisms of prokaryotes is bacterium. And

eukaryotes mainly consist of animal cells. In this thesis, we focus on developing

predictive models mathematically to study bacteria colonies and animal cell mitotic

dynamics.

Instead of living alone, bacteria usually survive in a biofilm, which is a microor-

ganism where bacteria stick together by extracellular matrix primarily made up of

extracellular polymeric substances (EPS) that the bacteria excrete. By treating the

biofilm and solvent as a fluid mixture, we have developed a mathematical modeling

framework and computational tool to investigate the mechanisms of biofilm formation

and function. The bacteria in biofilms can be categorized into various types either by

their persistence to antimicrobial treatments or by their reactions to quorum sensing

molecules. We have studied dynamics of 3D heterogeneous biofilm formation under

hydrodynamic stress, investigated the pros and cons of quorum sensing mechanism in

an aqueous environment subject to hydrodynamic impact, explored the mechanism

of antimicrobial persistence, looked into optimal dosing strategies, and examined the

impact of cell motility on the development of biofilm morphology. As an integral part

of the study, we have also validated our model of biofilm persistence to antimicrobial

treatment against the experimental results obtained in our collaborators’ laboratory.

Using the validated model, we then have probed the scenario of biofilm relapse after
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the antimicrobial treatment. These studies have demonstrated that our model and

computational package can be an effective tool for analyzing the mechanism of biofilm

formation and function.

During an eukaryotic cell cycle, mitosis is a process in which a mother cell divides

into two genetically identical daughter cells. In the initial stage of mitosis, the mother

cell, spreaded on a substrate, undergoes a dramatic shape change by detaching from

the substance and forming a spherical shape. During the late stage of mitosis, a

contractile ring forms on the cell division plane, splitting the mother cell into two

identical daughter cells. This late stage of mitotic process is also known as cytokine-

sis for eukaryotic cells. We have developed a modeling framework for simulating the

space-time evolution of cell morphology, cell motility and mitotic dynamics of eukary-

otic cells by a multiphase field complex fluids approach. In order to solve the complex

cellular dynamics models, we have developed a series of efficient, energy law preserv-

ing, stable schemes and implemented them on GPU clusters for high-performance

computing. The models have shown qualitative agreement with experiments on cell

rounding, movement, wrinkling, blebbing, and dividing processes.
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Chapter 1

Introduction

1.1 Research background

Cell Biology and Microbiology

A cell is the fundamental unit in all living organisms since animals and plants

are all made up of cells in a wide range of varieties. Given its unique role played

in living organisms, cell study has been the focus of biological research for centuries.

With the advancement of experimental technologies today, such as the transmission

electron microscopy(TEM), more cell functions and micro-structural details have been

uncovered, revealing an amazingly complex, microscopic universe of a cell.

Cells can be categorized into two types: prokaryotes, which does not contain a

membrane-bound nucleus and eukaryotes, which contain a nucleus that is bounded

by a membrane. For most of the prokaryotes, they are single-celled organisms, while

eukaryotes can be either of a single cell or of multicellular organisms. In this thesis,

we specifically focus on bacteria (which is one type of prokaryotes), and animal cells

(which is a main type of eukaryotic cells).

One of the main reason for conducting the research in this thesis goes to our long-

term collaborations with cell biologist Dr. Kenneth Jacobson from Department of Cell

Biology and Pharmacy, University of North Carolina at Chapel Hill, investigating cell

plasma membrane-cortex coupling and morphological dynamics, and microbiologist

Dr. Ya Shen from division of Endodonitics, Department of Dentistry, The University

of British Columbia, studying dental biofilm formation and their treatment (biofilms

1
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are microorganisms, where bacteria are attached to either biotic or abiotic surfaces

and embedded in self-secreted glue-like exopolysaccharides). This provides us access

to valuable first-hand experiment data, and motivations for conducting researches

shown in this thesis.

Many related works, experimentally and theoretically (both analytically and nu-

merically) have been published in the literature. We will give a thorough review for

previous and current relevant works on biofilms and mitotic cell dynamics in Chapter

3 and 4, respectively.

Complex fluid models

Complex fluids are fluids whose micro-structure can impact on the fluid macro-

scopic properties, which include complex fluid mixtures of different types. Usually

they may appear to be homogeneous in the macroscopic scale, but contain inho-

mogeneity at a mesoscopic scale [33]. In this sense, the material properties of the

complex fluid mixtures can be quite different when compared with each individual

fluid component. Notice the fact that cells are usually immersed in a viscoelastic fluid

matrix, where cell itself can also be treated as a viscoelastic fluid either in mesoscopic

(where we study a single cell) or macroscopic scale (where we study cell aggregates).

We, thus, formulate the models in a hydrodynamic setting, using complex fluid ap-

proaches.

There are plenty of works in the literature for modeling complex fluid mixtures.

Mainly we can category them into two approaches: (i) treating the fluid mixture as a

multiple-fluid mixture, i.e. the hydrodynamic quantities of each individual fluid are

tracked [47]; (ii) regarding the fluid mixture as one fluid with multiple components

[130, 131], i.e. volume-averaged hydrodynamic quantities are tracked, where the

effective hydrodynamic quantities for an individual fluid component can be calculated

through a pre-proposed formula. In this thesis, we stick to the second approach.

2
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(a) idea of the phase field model (b) methodology

Figure 1.1: Tools and Methodology of this research on modeling cellular dynamics.

When modeling immiscible fluid mixtures, there exists an interface, which sepa-

rates the different fluid components. Numerically this interface is difficult to resolve,

as it normally requires extremely high resolution of the mesh size at the interface.

There are a couple of broadly used strategies to tracking this interface, namely, the

immersed boundary method [82], the sharp interface method[106], the front tracking

method , the level set method [132] and the phase field method [109]. In this thesis,

we use the phase field approach. The basic idea of phase field method lies in exis-

tence an artificial transition layer between the two immersible fluids, shown in Figure

1.1(A) (for instance, the interface between cytosol and extra cellular matrix). As a

strength, we don’t need to track the interface explicitly, instead, the method resolves

the interface automatically.

To explain it succinctly, we show our methodology in conducting this research

in Figure 1.1(B). Mainly, we want to explore the available experimental data using

which to build predictive mathematical models to study the experimental system

better.

3
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1.2 A brief overview of the thesis

The rest of this thesis is organized as below. In chapter 2, we propose a general

framework for deriving governing equations for hydrodynamic systems of complex

fluid mixture, following a generalized Onsager’s principle. Then in chapter 3, we

show linearly decoupled energy-stable semi-discrete schemes to solve several special

cases of the general hydrodynamic model. In particular, the hydrodynamic vesicle

model and the hydrodynamic nematic liquid crystal model are specifically discussed

and the rigorous proof are provided. In Chapter 4, we propose a general framework for

modeling biofilm formation and its treatment by antimicrobial agents, where quan-

titative agreements are obtained. In Chapter 5, we introduce a general multi-phase

hydrodynamic modeling framework and numerical tool to study mitotic cell dynam-

ics. Finally, in Chapter 6, we draw a conclusion for the work conducted in the thesis.

4
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Chapter 2

A General Framework for Modeling

Hydrodynamic Systems

In the well-known paper [79], Onsager extended Rayleigh’s principle of the least

energy dissipation to general irreversible processes. Doi gives a review of its applica-

tions in soft matter physics in [22],. Onsager’s principle provides a general guideline

on deriving phenomenological governing equations for dissipative thermodynamic sys-

tems, which has been widely used in modeling ion channel [120, 25], liquid crystal

[125], biofilm [137], moving contact line [85] and so on. In this chapter, we develop a

framework on deriving continnum hydrodynamic equations for thermodynamic sys-

tems, by generalizing Onsager’s principle. And we will show many widely used models

are actually specical cases (limits) of our general model.

2.1 A general hydrodynamic model for passive fluid mixture

In [41], the authors have shown an approach to derive the hydrodynamic equations,

given the action functional and dissipation functional, based on least action principle

and maximum dissipation principle. Here the action functional controls the reversible

dynamics, and dissipation functional determines the irreversible dynamics, which

contributes to the entropy product. However, in reality, these functionals are not

known beforehand. Thus, this so-called variational approach is not so effective.

In this section, following the idea of Onsager [79, 80], we will present a general

framework, where the hydrodynamic equations could be derived systematically by

5
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proposing relations between the general fluxes and general forces. This approach

works for both single fluid and multiple fluid mixture with quite different rheology

properties. In the following, we will mainly focus on deriving general models of a

binary fluid mixture for simplicity, as the general hydrodynamic models for multiple

fluid mixture could be derived in a similar manner.

Thermodynamic background

Following the notations in [120], for a closed thermodynamic system, we denote

K as the kinetic energy, U as the internal energy, W as work done by the system, Q

as heat generated by the system, ∆ as energy dissipation, and E as total energy of

the system. By the first law of thermodynamics, we have

d(K + U)
dt

= dW

dt
+ dQ

dt
. (2.1.1)

By the second law of thermodynamics in isothermal case, we have

T
dS

dt
= dQ

dt
+ ∆. (2.1.2)

If we add (2.1.1) and (2.1.2), we obtain,

dE

dt
= d(K + U − TS)

dt
= dW

dt
−∆. (2.1.3)

In case of no external force, (2.1.3) is reduced into

dE

dt
= −∆. (2.1.4)

For passive system, we have ∆ > 0 at any time.

Derivation of the general hydrodynamic model

Given a fluid mixture with one viscoelastic fluid A (due to micro-structure in

mesoscopic scale) immersed in a viscous fluid matrix B. Denote S2 the unit sphere,

6
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d ∈ S2, and µ0(d) the volume fraction distribution functional of molecules with

orientation d for fluid A. Then we obtain the following three quantities:

φ =
∫
S2
dµ0(d), p =

∫
S2

ddµ0(d), Q =
∫
S2

(
d⊗ d− 1

3I
)
dµ0(d). (2.1.5)

Here φ is the volume fraction of fluid A, i.e.,

φ =


1, fluid A,

(0, 1), fluid mixture,

0, fluid B,

(2.1.6)

p is the macroscopic polar (nematic) orientation of fluid A, and Q is a quantity

representing the macroscopic apolar structure of fluid A.

With the thermodynamic system in domain Ω, the total energy E consists two

components: (1)kinetic energy Ekin; (2) free energy F , i.e.

E = Ekin + F

=
∫

Ω
1
2ρv

2dx +
∫

Ω f(φ,∇φ,p,∇p,Q,∇Q)dx,
(2.1.7)

where v is the volume-averaged velocity, ρ is the volume-averaged density, f is the

free energy density functional. In case of nonlocal interaction, we can propose

f =
∫

Ω
K(x− y)g(φ(y, t),p(y, t),Q(y, t))dy, (2.1.8)

with K a kernel function and g a functional. To make the framework general, in the

following discussion, we don’t restrict to any specific energy functional.

Given the free energy F , we can define the chemical potential µ and molecular

fields h,H as

µ = δF

δφ
, h = −δF

δp
, H = − δF

δQ
+ 1

3tr(
δF

δQ
)I. (2.1.9)

7
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Then phenomenologically we have the governing equations as

ρ(vt + v · ∇v) = −∇p+∇ · σ + Fe,

∇ · v = 0,

φt +∇ · (vφ) = M1,

pt + v · ∇p− S1(∇v,p) = M2,

Qt + v · ∇Q− S2(∇v,Q) = M3,

(2.1.10)

with σ the viscoelastic stress, Fe is elastic force, Dαβ = 1
2(vα,β + vβ,α) the rate of

strain tensor , W = 1
2(vα,β − vβ,α) the vorticity tensor, and

S1(∇v,p) = W · p + νD · p,

S2(∇v,Q) = W ·Q−Q ·W

+a(Q ·D + D ·Q) + 2a
3 D− 2a(D : Q)(Q + 1

3I),

(2.1.11)

with ν and a the tumbling parameters. We consider non-slip boundary condition for

v and non-flux boundary condition for φ, p, Q, i.e.

v = 0, on ∂Ω,
∂F
∂∇φ · n = 0, ∂F

∂∇p · n = 0, ∂F
∂∇Q · n = 0, on ∂Ω.

(2.1.12)

Then the time rate change of the total energy could be calculated

dE
dt

=
∫

Ω
1
2ρtv

2 + ρvvt + ∂F
∂φ

∂φ
∂t

+ ∂F
∂∇φ(∇φ)t

+∂F
∂p pt + ∂F

∂∇p(∇p)t + ∂F
∂QQt + ∂F

∂∇Q(∇Q)tdx

=
∫

Ω−1
2ρtv

2 + v(ρv)t + δF
δφ

∂φ
∂t

+ δF
δp

∂p
∂t

+ δF
δQ

∂Q
∂t
dx

+
∫
∂Ω

∂F
∂∇φ · nφt + ∂F

∂∇p · npt + ∂F
∂∇Q · nQtds.

(2.1.13)

Noticing the fact

∫
Ω−1

2ρtv
2 + v(ρv)tdx

=
∫

Ω
1
2∇ · (ρv)v2 − v∇ · (ρvv) + v · (∇ · τ + Fe)dx

=
∫

Ω
1
2∇ · (ρv)v2 −∇ · (ρv)v2 − ρv∇(1

2v2) + v · (∇ · τ + Fe)dx

=
∫

Ω−1
2∇ · (ρv

v2

2 ) + v · (∇ · τ + Fe)dx,

(2.1.14)

8
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we have

dE
dt

=
∫
Ω−∇v : τ + v · Fe + δF

δφ
φt + δF

δp pt + δF
δQQtdx

+
∫
∂Ω v · τ · n− 1

2ρ|v|
2v · n + ∂F

∂∇φ · nφt + ∂F
∂∇p · npt + ∂F

∂∇Q · nQtds.

(2.1.15)

By substituting

φt = M1 −∇ · (vφ),

pt = M2 − v · ∇p + S1(∇v,p),

Qt = M3 − v · ∇Q + S2(∇v,Q),

(2.1.16)

due to (2.1.10), we further have

dE
dt

=
∫
Ω−∇v : τ + v · Fe + δF

δφ
(−∇ · (vφ) +M1)

+ δF
δp

(
−∇ · (vp) + S1(∇v,p) +M2

)
+ δF
δQ

(
−∇ · (vQ) + S2(∇v,Q) +M3

)
dx

=
∫
Ω−∇v : τ + v · Fe − φ δFδφ∇ · v−

δF
δφ
∇φ · v

− δF
δp · p∇ · v−

δF
δp∇p · v− δF

δQ ·Q∇ · v−
δF
δQ∇Q · v

+ δF
δpS1(∇v,p) + δF

δQS2(∇v,Q) + δF
δφ
M1 + δF

δpM2 + δF
δQM3dx

=
∫
Ω v · (Fe − δF

δφ
− δF

δp∇p− δF
δQ∇Q) + δF

δφ
M1 + δF

δpM2 + δF
δQM3

+∇v : (−τ − φ δF
δφ

I− p · δF
δp I−Q · δF

δQI + T1(h,p)) + T2(H,Q))dx.

(2.1.17)

with
T1(h,p) = 1

2(ph− hp)− ν
2 (ph + hp)

T2(H,Q) = (Q ·H−H ·Q)− a(H ·Q + Q ·H)

−2a
3 H + 2a(Q : H)(Q + 1

3I).

(2.1.18)

Here if we further assume

Fe − δF
δφ
∇φ− δF

δp∇p− δF
δQ∇Q = 0,

−τ − φ δF
δφ
δ − p · δF

δp δ −Q · δF
δQδ + T1(h,p) + T2(H,Q) = τr,

(2.1.19)

the energy dissipation rate could be expressed as

dE

dt
= −

∫
Ω

(∇v,−δF
δφ
,−δF

δp
,− δF

δQ
) · (τr,M1,M2,M3)dx. (2.1.20)

9
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Here (τr,M1,M2,M3) are the general fluxes, and (∇v,− δF
δφ
,− δF

δp ,−
δF
δQ) are the

general conjugate forces. We can assume the fluxes are linear combinations of forces,

i.e. 

τr

M1

M2

M3


= A1



∇v

− δF
δφ

− δF
δp

− δF
δQ


, (2.1.21)

where

A1 = A1(φ,∇φ,p,∇p,Q,∇Q). (2.1.22)

Theorem 2.1.1 (Onsager’s Principle). The general model (2.1.10) is energy dissipa-

tive, given that

A1 = A+
1 + A−1 , (2.1.23)

with A−1 anti-symmetric and A+
1 is symmetric and positive definite.

Proof. This is trivial. Actually, from (2.1.20), if we denote

N = (∇v,−δF
δφ
,−δF

δp
,− δF

δQ
), (2.1.24)

we have
dE
dt

= −
∫

Ω N · A1 ·NTdx

= −
∫

ΩN · A+
1 ·NTdx

≤ 0,

(2.1.25)

given A+
1 is positive and definite.

Remark 2.1.1. This is the so-called Onsager’ principle [79]. Here A+
1 controls the

dissipative (irreversible) dynamics; A−1 controls the reactive (reversible) dynamics.

There are many freedom on proposing A+
1 and A−1 as long as A+

1 symmetric,

positive definite and A−1 anti-symmetric. Therefore, we can generate a class of models

with proper choices of A+
1 and A−1 .

10
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Given higher restrictions on the boundary conditions,

v = 0, on ∂Ω,
∂F
∂∇φ · n = 0, ∂F

∂∇p · n = 0, ∂F
∂∇Q · n = 0, on ∂Ω,

∇ δF
δφ
· n = 0, ∇ δF

δp · n = 0, ∇ δF
δQ · n = 0, on ∂Ω.

(2.1.26)

we can make (2.1.10) more general by proposing the general fluxes are linear combi-

nations of general forces and their high-order derivatives, i.e.

τr

M1

M2

M3


= A1



∇v

− δF
δφ

− δF
δp

− δF
δQ


+ A2



−∆∇v

∆ δF
δφ

∆ δF
δp

∆ δF
δQ ,


, (2.1.27)

with

A1 = A1(φ,∇φ,p,∇p,Q,∇Q), A2 = A2(φ,∇φ,p,∇p,Q,∇Q). (2.1.28)

Theorem 2.1.2. The general model (2.1.10) is energy dissipative, given that

A1 = A+
1 + A−1 , A2 = A+

2 + A−2 , (2.1.29)

with A−1 , A−1
2 anti-symmetric and A+

1 , A
+
2 are symmetric and positive definite.

Proof. This proof is similar.

2.2 Several special cases for the general hydrodynamic model

In this section, we will show some of the well-known models could be treated as

special cases (limits) of the general model (2.1.10). Here, we mainly category three

types: (i) viscous fluid mixture; (ii) fluid mixture with polar micro-structure; (iii)

fluid mixture with apolar micro-structure.

11
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Viscous fluid mixture

If fluid A is viscous, i.e.,

p =
∫
S2

ddµ(d) = 0, Q =
∫
S2

(
d⊗ d− 1

3I
)
dµ0(d) = 0, (2.2.30)

the general model (2.1.10) is reduced into

ρ
(

vt + v · ∇v
)

= −∇p+∇ · τ r − φ∇µ,

∇ · v = 0,

φt +∇ · (vφ) = M1,

(2.2.31)

with  τr

M1

 = A1

 ∇v

−µ

+ A2

 −∆∇v

∆µ

 . (2.2.32)

Here are several cases, by assuming different matrix elements for A1 and A2.

Example 2.2.1 (Allen-Cahn hydrodynamic model). The model (2.2.31) is reduced

into the Allen-Cahn hydrodynamic model

ρ
(

vt + v · ∇v
)

= −∇p+∇ · (2ηD)− φ∇µ,

∇ · v = 0,

φt +∇ · (vφ) = −λ1µ,

(2.2.33)

if we assume

A1 =

 η 0

0 λ1

 , A2 = 0. (2.2.34)

This model describes the evolution dynamics of an unconserved field. It has been

widely used to study phase separation of iron alloys.

Example 2.2.2 (Cahn-Hilliard hydrodynamic model). The model (2.2.31) is reduced

into Cahn-Hilliard hydrodynamic model

ρ
(

vt + v · ∇v
)

= −∇p+∇ · (2ηD)− φ∇µ,

∇ · v = 0,

φt +∇ · (vφ) = λ1∇2µ,

(2.2.35)

12
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if we propose

A1 =

 η 0

0 0

 , A2 =

 0 0

0 λ1

 . (2.2.36)

This model shows the evolution of a conserved quantity, which is initially brought

out by [14, 13]. Given the Ginzburg-Landau free energy, this model have been broadly

used to simulate phase separations [27]. Give the modified Flory Huggins free energy,

this model have been used to study biofilm dynamics [130, 131]. Given the Herfrich

bending energy, this model has been broadly used to study cell shapes [24, 115].

Fluid mixture with polar micro-structure

If fluid A is viscoelastic with polar micro-structure in mesoscopic scale, i.e.

p =
∫
S2

ddµ0(d) 6= 0. (2.2.37)

We can model this system with a simplified version of (2.1.10), i.e.

ρ
(

vt + v · ∇v
)

= −∇p+∇ · τ r + T1(h,p)− φ∇µ− h∇p,

∇ · v = 0,

φt +∇ · (vφ) = M1,

pt + v · ∇p− S1(∇v,p) = M2,

(2.2.38)

with

T1(h,p) = 1
2(ph− hp)− ν

2(ph + hp). (2.2.39)

Example 2.2.3. The model (2.2.38) is reduced into nematic hydrodynamic model

ρ
(

vt + v · ∇v
)

= −∇p+∇ · (2ηD) + T1(h,p)− φ∇µ− h∇p,

∇ · v = 0,

φt +∇ · (vφ) = λ1∇2µ,

pt + v · ∇p− S1(∇v,p) = λ2h,
(2.2.40)

13
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given that

A1 =


η 0 0

0 0 0

0 0 λ2

 , A2 =


0 0 0

0 λ1 0

0 0 0

 . (2.2.41)

This model has been broadly used to study nematic liquid crystals [122, 124].

Fluid mixture with apolar micro-structure

If fluid A is viscoelastic, but with apolar micro-structure in mesoscopic scale, i.e.,

p =
∫
S2

ddµ(d) = 0, Q =
∫
S2

(
d⊗ d− 1

3I
)
dµ0(d) 6= 0, (2.2.42)

the general model (2.1.10) is reduced into

ρ
(

vt + v · ∇v
)

= −∇p+∇ · τ r + T2(H,Q)− φ∇µ−H∇Q,

∇ · v = 0,

φt +∇ · (vφ) = M1,

Qt + v · ∇Q− S2(∇v,Q) = M3,

(2.2.43)

with

T2(H,Q) = (Q ·H−H ·Q)−a(H ·Q+Q ·H)− 2a
3 H+2a(Q : H)(Q+ 1

3I). (2.2.44)

Example 2.2.4. The model (2.2.43) is reduced into

ρ
(

vt + v · ∇v
)

= −∇p+∇ · (2ηD) + T2(H,Q)− φ∇µ−H∇Q,

∇ · v = 0,

φt +∇ · (vφ) = λ1∇2µ,

Qt + v · ∇Q− S2(∇v,Q) = λ2H,

(2.2.45)

given that

A1 =


η 0 0

0 0 0

0 0 λ3

 , A2 =


0 0 0

0 λ1 0

0 0 0

 . (2.2.46)

14



www.manaraa.com

This model has been recently used to study active liquid crystals by adding extra

active stress [8].

Miscellaneous cases

This general model formulation also works for single-fluid case, i.e.

φ =
∫
S2
dµ0(d) = 1. (2.2.47)

Example 2.2.5. The general model (2.1.10) is reduced into

ρ
(

vt + v · ∇v
)

= −∇p+∇ · (2ηD) + T1(h,p)− h∇p,

∇ · v = 0,

pt + v · ∇p− S1(∇v,p) = λ2h,

(2.2.48)

given that

A1 =



η 0 0 0

0 0 0 0

0 0 λ2 0

0 0 0 0


, A2 = 0. (2.2.49)

This is the modified Ericksen-Leslie model and has been widely used to study

nematic liquid crystals [63, 146, 145].

2.3 Hydrodynamic models for active fluid mixture

In many biological systems, saying fish school, bacteria colonies, they consist of

self-driven units, i.e. each unit or particle will consume chemical-biological energy

that affecting the internal or external free energy. The system is not energy dissipative

any more (we need to treat a bigger system in order to make it closed). However,

we can formulate the governing equation in an effect-splitting approach, i.e. we first

formulate the governing equation for the passive system. Then we plug in the extra

active terms into the governing system, which reflects the activities generated by the

15



www.manaraa.com

self-driven kinetics. This approach turns out effective and have been widely used in

the society of biophysics.

For instance,if we take into account of the activity, we can rewrite the model

(2.2.40) into

ρ(∂tv + v · ∇v) = −∇p+∇ · (σ + σa),

∇ · v = 0,

∂tφ+∇ · ((v + ω1p)φ) = M1∇2µ,

∂tp + (v + ω2p) · ∇p− S1(∇v,p) = M2h,

(2.3.50)

where σa represents the active stress, ω1, ω2 are self-propelled motion. One broadly

used version for the active stress is [125, 126]

σa = β(∇p +∇pT ) + ζpp, (2.3.51)

with β the active viscosity and ζ the parameter for active motion. The active motion

could be intuitively seen as a force dipole along the long-axis [37].
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Chapter 3

Energy Stable Semi-discrete Schemes for the

general hydrodynamic models

For the thermodynamically consistent models proposed in previous chapter, as

they are too complicated for analysis, numerical solutions are desired. Notice the

models obey the energy dissipation law, i.e. the total energy is dissipative in time.

This provides a guideline, for developing numerical schemes, which satisfy the discrete

energy law. In this chapter, we summarize our work on developing linearly decoupled

semi-discrete energy stable numerical schemes for cracking several special cases of the

general model proposed in previous chapter.

3.1 An overview of existing works

In terms of the several special cases we mentioned in previous chapter, the nu-

merical schemes for Allen-Cahn hydrodynamic model (2.2.33) and the Cahn-Hilliard

hydrodynamic model (2.2.35) have been widely studied. Shen and Yang are known

for introducing the stabilizers [123, 95, 97]. Wise and Wang are known for propos-

ing the convex splitting strategies [96, 118, 119]. In [74], the author has proposed a

decoupled energy-stable numerical scheme for a ternary phase hydrodynamic model.

The idea follows directly from operator-splitting, the velocity field is calculated by a

two-step manner.

For the p vector-based liquid crystal (LC) hydrodynamic models (2.2.45), a few

numerical schemes have been proposed. However, we would point out most are not
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proper, as they are dealing with a reduced version (which, too some extend, is not

correct physically). For the Q tensor-based liquid crystal (LC) hydrodynamic models

(2.2.40), there are few literatures available, as far as we are aware, though it has been

broadly used in physically world for simulations.

During our research, we have proposed several energy-stable numerical schemes for

some special cases of the general hydrodynamic models (2.1.10). Here we summarize

two of them below.

3.2 A decoupled energy stable scheme for a hydrodynamic phase field

model for cell membrane

Mathematical model formulation

Here we use F to denote the thermodynamic free energy, which consists of three

components:

F = Fs + Fb + Fvol, (3.2.1)

where Fs is the inter-facial (surface tension) energy, given by the Ginzburg-Landau

double-well potential,

Fs =
∫

Ω
γ1

(1
2 |∇φ|

2 + fs(φ)
)
dx, fs(φ) = 1

ε2φ
2(1− φ)2, (3.2.2)

and Fb is the Helrfrich bending energy, with the form

Fb =
∫

Ω

γ2

2

(
∇2φ− fb(φ)

)2
dx, fb(φ) = 2

ε2φ(φ− 1)(2φ− 1). (3.2.3)

Here Fvol is the constraint for total volume, proposed as

Fvol = λA
2 (V (t)− V0)2, V (t) =

∫
Ω
φ(x, t)dx, V0 =

∫
Ω
φ(x, 0)dx. (3.2.4)

The detailed derivation of these free energy from a sharp-interface approach is omitted

due to space limitation [133, 109]. Here we use µ to represent the chemical potential,
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which can be calculated by

µ = δF

δφ
= γ1(−∇2φ+f ′s(φ)) +γ2(∇2−fb(φ))(∇2φ−f ′b(φ)) +λA(V (t)−V0). (3.2.5)

We further assume the two components in the fluid mixture have same density

and viscosity, as the case with different density and viscosity could be dealt with

similar manner. The non-dimensionalized Cahn-Hilliard vesicle model is proposed by
∂tv + v∇ · v = −∇p+ η∇2v + µ∇φ,

∇ · v = 0,

∂tφ+ v · ∇φ = M1∇2µ,

(3.2.6)

with M1 the motility parameter and η the volume-averaged viscosity.

Correspondingly, the non-dimensionalized Allen-Cahn vesicle model with volume

conservation is proposed as
∂tv + v∇ · v = −∇p+ η∇2v + µ∇φ,

∇ · v = 0,

∂tφ+ v · ∇φ = −M1µ.

(3.2.7)

Numerical schemes

Here we have proposed two decoupled energy stable numerical schemes for the

Alan-Cahn dynamics and Cahn-Hilliard dynamics. Here numerical schemes are sum-

marized in this section. The proves are given in details in next section.

Numerical scheme for Allen-Cahn model

Given the initial condition φ0, u0 and p0 = 0, and having computed (φn,un, pn),

we can calculate (φn+1,un+1, pn+1) by the following two steps:
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1. Step 1: Update φn+1:

C1(φn+1 − φn) + 1
M1
φ̇n+1 = −µn+1

µn+1 = γ1(−∇2φn+1 + f ′s(φn)) + γ2(∇2 − f ′b(φn))(∇2φn+1 − fb(φn))

+λA(An − A0),

∇φn+1 · n = 0, ∇∇2φn+1 · n = 0.
(3.2.8)

with
φ̇n+1 = φn+1−φn

δt
+ (un? · ∇)φn,

un? = un − δt φ̇n+1

M1
∇φn,

An =
∫

Ω φ
ndx.

(3.2.9)

2. Step2: Update (un+1, pn+1): calculate the following two equations sequentially
ũn+1−un?

δt
+ (un · ∇)ũn+1 = ν∇2ũn+1 −∇pn,

ũn+1|∂Ω = 0.
(3.2.10)



un+1−ũn+1

δt
= −∇(pn+1 − pn),

∇ · un+1 = 0,

un+1 · n|∂Ω = 0.

(3.2.11)

Numerical scheme for Cahn-Hilliad model

Given the initial condition φ0, u0 and p0 = 0, and having computed (φn,un, pn),

we can calculate (φn+1,un+1, pn+1) by the following two steps:

1. Update φn+1:

1
M1
φ̇n+1 = ∇2µn+1,

µn+1 = C1(φn+1 − φn) + C2(∇2φn+1 −∇2φn) + γ1(−∇2φn+1 + f ′s(φn))

+∇2∇2φn+1 − f ′b(φn)∇2φn −∇2fb(φn) + f ′b(φn)fb(φn),

∇φn+1 · n = 0, ∇∇2φn+1 · n = 0, ∇∇4φn+1 · n = 0,
(3.2.12)
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with

φ̇n+1 = φn+1 − φn

δt
+∇ · (un?φn), un? = un − δtφn∇µn+1. (3.2.13)

2. Update (un+1, pn+1):
ũn+1−un

δt
+ (un · ∇)ũn+1 = ν∇2ũn+1 −∇pn − φn∇µn+1,

ũn+1|∂Ω = 0.
(3.2.14)


un+1−ũn+1

δt
= −∇(pn+1 − pn),

∇ · un+1 = 0, un+1 · n|∂Ω = 0.
(3.2.15)

Semi-discrete energy dissipation law

Before showing our theorems, we provide a lemma here, which is essential for

the proof later. Besides, the conditions in the lemma could be optimized if we use

nonlinear schemes saying convex splittings.

In this context, we use (·, ·) to represent the inner-product in domain Ω. Define

the discretized free energy F n as

F n = γ1

(1
2 |∇φ

n|2 +fs(φn), 1
)

+ γ2

2

(
|∇2φn−fb(φn)|2, 1

)
+ 1

2λA(An−A0)2. (3.2.16)

In this whole draft, we assume the following inequalities are always true,

max
x∈R
|f ′′s (x)| < L3, max

x∈R
|(fb(x)2)′′| < L1, max

x∈R
|f ′b(x)| < L4, max

x∈R
|f ′′b (x)| < L2.

(3.2.17)

One may argue this condition is not satisfied. However, notice the truth fb(φ) =

f ′s(φ). The assumption (3.2.17) on the existence of L1, L2, L3, L4 above is equivalent

with

max
x∈R
|f (i)
s (x)| < L <∞, ∀i = 1, 2, 3. (3.2.18)

We can truncate fs(φ) to quadratic growth outside of an interval [0, 1] without af-

fecting the solutions, if the maximum norm of the initial condition φ0 is bounded by
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1. For instance, we can truncate fs(φ) as

f̃s(φ) =



1
ε2 (φ− 1)2, φ > 1,

1
ε2φ

2(1− φ)2, φ ∈ [0, 1]
1
ε2φ

2, φ < 0.

(3.2.19)

One can notice, (3.2.17) or (3.2.18) could be satisfied by f̃s(φ).

Lemma 3.2.1. Define the discrete chemical potential as

µn+1 = γ1

(
−∇2φn+1 + f ′s(φn)

)
− γ2(∇2 − f ′b(φn))(∇2φn+1 − fb(φn))

+λA(An − A0).
(3.2.20)

the inequality holds

C1‖φn+1 − φn‖2 + (φn+1 − φn, µn+1) > F n+1 − F n, (3.2.21)

given

C1 > γ1L3 + γ2

(
L1 + +8L2

4 + L2 max ‖∇2φn‖
)

+ 1
2λA|Ω|, (3.2.22)

with F n+1 and F n defined in (3.2.16), and Li, i = 1, 2, 3, 4 defined in (3.2.17).

Proof. Taking the inner product of µn+1 with φn+1 − φn, we have

(φn+1 − φn, µn+1) =
(
φn+1 − φn, γ1(−∇φn+1 + f ′s(φn))

)
+
(
φn+1 − φn, γ2(∇2 − f ′b(φn))(∇2φn+1 − fb(φn))

)
+
(
φn+1 − φn, λA(An − A0)

)
.

(3.2.23)

Here we denote

S = (φn+1 − φn, µn+1),

S1 =
(
φn+1 − φn, γ1(−∇2φn+1 + f ′s(φn))

)
,

S2 =
(
φn+1 − φn, γ2(∇2 − f ′b(φn))(∇2φn+1 − fb(φn))

)
,

S3 =
(
φn+1 − φn, λA(An − A0)

)
.

(3.2.24)
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For the first term S1, it holds,

1
γ1
S1 ≥ 1

2

(
‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2

)
+(f(φn+1)− f(φn), 1)− L3‖φn+1 − φn‖2.

(3.2.25)

For the second term S2, we have the following identify

1
γ2
S2 =

(∇2 − f ′b(φn)
)

(φn+1 − φn),∇2φn+1 − fb(φn)


= (∇2(φn+1 − φn),∇2φn+1)− (f ′b(φn)(φn+1 − φn),∇2φn+1)

−
(
∇2(φn+1 − φn), fb(φn)

)
+ (f ′b(φn)fb(φn), φn+1 − φn).

(3.2.26)

To better demonstrate the idea, let’s set up several notations,

T1 = (∇2(φn+1 − φn),∇2φn+1),

T2 = −(f ′b(φn)(φn+1 − φn),∇2φn+1) +
(
∇2(φn+1 − φn), fb(φn)

)
,

T3 = (f ′b(φn)fb(φn), φn+1 − φn).

(3.2.27)

T1 = 1
2

(
‖∇2φn+1‖2 − ‖∇2φn‖2 + ‖∇2φn+1 −∇2φn‖2

)
. (3.2.28)

T2 = (∇2φn+1, fb(φn) + f ′b(φn)(φn+1 − φn)) + (∇2φn, fb(φn))

= −
(
fb(φn+1)∇2φn+1 − fb(φn)∇2φn, 1

)
−(∇2φn+1, fb(φn+1)− fb(φn)− f ′b(φn)(φn+1 − φn)),

(3.2.29)

where the last term could be better approximated as

−
(
∇2φn+1, fb(φn+1)− fb(φn)− f ′b(φn)(φn+1 − φn)

)
= −

(
∇2φn+1 −∇2φn +∇2φn, fb(φn+1)− fb(φn)− f ′b(φn)(φn+1 − φn)

)
= −

(
∇2φn+1 −∇2φn, (f ′b(ξ)− f ′b(φn))(φn+1 − φn)

)
−(∇2φn, f ′′b (ξ)(φn+1 − φn)2)

≥ −2L4

(
|∇2φn+1 −∇2φn|, |φn+1 − φn|

)
− L2

(
|∇2φn|, |φn+1 − φn|2

)
≥ −

 ε0
2 ‖∇

2φn+1 −∇2φn‖2 + 8L2
4

ε0
‖φn+1 − φn‖2

+L2 max |∇2φn|‖φn+1 − φn‖2

,
(3.2.30)
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where ε0 is any positive constant. Here we choose ε0 = 1.

T3 = 1
2(f 2

b (φn+1)− f 2
b (φn), 1)− ((f 2

b (ξ))′′(φn+1 − φn)2, 1)

≥ 1
2(f 2

b (φn+1)− f 2
b (φn), 1)− L1‖φn+1 − φn‖2.

(3.2.31)

For the third term S3, it holds

1
λA
S3 = (φn+1 − φn, An − A0)

= (An+1 − An)(An − A0)

=
(

(An+1 − A0)− (An − A0)
)

(An − A0)

= 1
2

(
(An+1 − A0)2 − (An − A0)2 − (An+1 − An)2

)
≥ 1

2

(
(An+1 − A0)2 − (An − A0)2

)
− 1

2 |Ω|‖φ
n+1 − φn‖2,

(3.2.32)

by noticing the fact

−(An+1 − An)2 = −
( ∫

Ω
φn+1 − φndx

)2
≥ −|Ω|‖φn+1 − φn‖2.

Combing all the three terms for S1, S2 and S3, we have,

S ≥ F n+1 − F n − γ1L3‖φn+1 − φn‖2 − λA|Ω|
2 ‖φ

n+1 − φn‖2 − γ2L1‖φn+1 − φn‖2

−8γ2L
2
4‖φn+1 − φn‖2 − γ2L2 max |∇2φn|‖φn+1 − φn‖2.

(3.2.33)

Under the assumption

C1 > γ1L3 + γ2

(
L1 + +8L2

4 + L2 max ‖∇2φn‖
)

+ 1
2λA|Ω|. (3.2.34)

We have directly

C1‖φn+1 − φn‖2 + (φn+1 − φn, µn+1) > F n+1 − F n, (3.2.35)

Lemma 3.2.2. Define the discrete chemical potential as

µn+1 = γ1

(
−∇2φn+1 + f ′s(φn)

)
− γ2(∇2 − f ′b(φn))(∇2φn+1 − fb(φn))

+λA(An − A0).
(3.2.36)
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Under the assumption (3.2.17), it holds

C1‖φn+1 − φn‖2 + C2‖∇φn+1 −∇φn‖2 + (φn+1 − φn, µn+1) > F n+1 − F n, (3.2.37)

as long as

C1 > γ1L3 + γ2

(
L1 + +8L2

4
ε0

+ L2 max ‖∇2φn‖
)

+ 1
2λA|Ω|,

C2 > 1
2ε0 − 1

2γ2,
(3.2.38)

with ε0 any positive constant.

Proof. This proof is similar with Lemma 3.2.1. The only different part is that we use

the Cauchy inequality with different parameter for (3.2.30), i.e.

−2L4

(
|∇2φn+1 −∇2φn|, |φn+1 − φn|

)
− L2

(
|∇2φn|, |φn+1 − φn|2

)
≥ −

(
ε0
2 ‖∇

2φn+1 −∇2φn‖2 + 8L
2
4
ε0
‖φn+1 − φn‖2

+L2 max |∇2φn|‖φn+1 − φn‖2
)
.

(3.2.39)

Lemma 3.2.3. Define the discrete chemical potential as

µn+1 = γ1

(
−∇2φn+1 + f ′s(φn)

)
−γ2(∇2 − f ′b(φn))(∇2φn+1 − fb(φn)) + λA(An − A0).

(3.2.40)

If we propose

f ′b(φn) =


fb(φn+1)−fb(φn)

φn+1−φn , if φn+1 6= φn,

f ′b(φn), if φn+1 = φn.
(3.2.41)

Under the assumption (3.2.17), it holds

C1‖φn+1 − φn‖2 + (φn+1 − φn, µn+1) > F n+1 − F n, (3.2.42)

as long as

C1 > γ1L3 + γ2L1 + +1
2λA|Ω|. (3.2.43)
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Proof. Notice the fact, if we assume f ′b(φn) as (3.2.41), it holds directly

−
(
∇2φn+1, fb(φn+1)− fb(φn)− f ′b(φn)(φn+1 − φn)

)
= 0. (3.2.44)

The extra constraints induced by this term could be reduced.

Theorem 3.2.1. Under the condition of either Lemma 3.2.1, Lemma 3.2.2 or Lemma

3.2.3, the scheme (3.2.8)-(3.2.10) admits a unique solution satisfying the following

discrete energy dissipation law:

1
2‖u

n+1‖2 + F n+1 + δt2

2 ‖∇p
n+1‖2 + 1

2‖ũ
n+1 − un‖2 + 2νδt‖∇ũn+1‖2

+ δt
M1
‖φ̇n+1‖2 ≤ 1

2‖u‖
n + F n + δt2

2 ‖∇p
n‖2.

(3.2.45)

Proof. The proof is similar with previous results when we only consider the surface

tension energy, but with some tricky techniques. If we take inner product of (3.2.8)

with (φn+1 − φn), we’ll have

C1‖φn+1−φn‖2 + δt

M1
‖φ̇n+1‖2− δt( φ̇

n+1

M1
,un? ·∇φn) + (φn+1−φn, µn+1) = 0. (3.2.46)

By either Lemma 3.2.1, Lemma 3.2.2 or Lemma 3.2.3, i.e.

C1‖φn+1 − φn‖2 + (φn+1 − φn, µn+1) ≥ F n+1 − F n, (3.2.47)

it holds,

F n+1 − F n + δt

M1
‖φ̇n+1‖2 − δt( φ̇

n+1

M1
,un? · ∇φn) < 0. (3.2.48)

If we take inner product of (3.2.9) with un? , we have

1
2

(
‖un?‖2 − ‖un‖2 + ‖un? − un‖2

)
+ δt(un? ,

φ̇n+1

M1
∇φn) = 0. (3.2.49)

If we take inner prodcut of (3.2.10) with δtũn+1, we have

1
2

(
‖ũn+1‖2 − ‖un?‖2 + ‖ũn+1 − un‖2

)
+ δtν‖∇ũn+1‖2 + (ũn+1,∇p) = 0. (3.2.50)

If we take inner product of (3.2.11) with δtun+1, we have

1
2

(
‖un+1‖2 − ‖ũn+1‖2 + ‖un+1 − ũn+1‖2

)
= 0. (3.2.51)
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If we take inner product of (3.2.11) with δt2pn, we have,

δt2
(
‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇pn+1 −∇pn‖2

)
− 2δt(ũn+1,∇pn) = 0. (3.2.52)

And notice
‖un+1‖2 + ‖un+1 − ũn+1‖2 = ‖ũn+1‖2,

δt2‖∇pn+1 −∇pn‖2 = ‖un+1 − ũn+1‖2.
(3.2.53)

Combing all the terms, we have

1
2

(
‖un+1‖2 − ‖un?‖2 + ‖ũn+1 − un?‖2

)
+ δt2

(
‖∇pn+1‖ − ‖∇pn‖2

)
+2νδt‖∇ũn+1‖2 = 0.

(3.2.54)

Combing (3.2.48),(3.2.49),(3.2.54), we get the result,

1
2‖u

n+1‖2 + F n+1 + δt2

2 ‖∇p
n+1‖2 + 1

2‖ũ
n+1 − un‖2 + 2νδt‖∇ũn+1‖2

+ δt
M1
‖φ̇n+1‖2 ≤ 1

2‖u‖
n + F n + δt2

2 ‖∇p
n‖2.

(3.2.55)

Theorem 3.2.2. Under the condition of either Lemma 3.2.1, Lemma 3.2.2 or Lemma

3.2.3, the scheme (3.2.12)-(3.2.14) admits a unique solution satisfying the following

discrete energy dissipation law:

1
2‖u

n+1‖2 + F n+1 + δt2

2 ‖∇p
n+1‖2 + 1

2‖ũ
n+1 − un‖2 + 2νδt‖∇ũn+1‖2

+ δt
M1
‖∇µn+1‖2 ≤ 1

2‖u‖
n + F n + δt2

2 ‖∇p
n‖2,

(3.2.56)

Proof. This proof is similar with the Allen-Cahn case. We thus leave it to interested

readers.
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3.3 A decoupled energy stable scheme for a hydrodynamic phase-

field model of mixtures of nematic liquid crystals and viscous

fluids

Two-phase hydrodynamic model for mixtures of nematic

liquid crystals and viscous fluids

We consider a two-phase hydrodynamic phase field model for immiscible mixtures

of nematic liquid crystals (LC) immersed in a viscous fluid matrix. We use a phase

function φ to represent the volume fraction of the liquid crystal phase,

φ(x, t) =


1 liquid crystal,

0 viscous fluid,
(3.3.57)

with a thin smooth transitional layer of thickness ε separating the liquid crystal

from the viscous fluid. The interface of the mixture is described by the level set

Γt = {x : φ(x, t) = 1
2}. We use ρ and η to denote the volume-averaged density and

viscosity. Without loss of generality, we assume all model parameters are already

non-dimensionalized and therefore dimensionless.

The total energy of the mixture fluid system is given by the sum of the kinetic

energy Ekin, the mixing free energy Eb, the bulk free energy for liquid crystals Ep,

and the anchoring energy for liquid crystals Eanch [128]:

E = Eb + Ed + Eanch + Ekin. (3.3.58)

Specifically, we denote f(φ) = 1
ε2φ

2(1 − φ)2 as the Ginzburg-Landau double-well

potential and define the mixing free energy functional by

Eb =
∫

Ω
γ(1

2 |∇φ|
2 + f(φ))dx, (3.3.59)

where γ is the strength of the energy related to the traditional surface tension [128].
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We assume that the bulk energy for liquid crystals is given by the modified Oseen-

Frank distortional energy with a penalizing bulk term for handling potential defects

[26, 55, 56]:

Ed =
∫

Ω

1
2φ

2W (p)dx, W (p) = K(1
2 |∇p|2 + g(p)), (3.3.60)

where K is the Frank elastic constant [125] and g(p) = 1
4δ2 (|p|2 − 1)2 is a Ginzburg-

Landau type penalty term, introduced to approximate the unit length constraint of

p [62, 61], where δ is a model parameter measuring the size of the defect core.

At the interface between the viscous fluid and the liquid crystal, a surface energy

known as the anchoring energy is necessary to yield a preferred orientation for the

liquid crystal [42, 34]. The anchoring energy is given by

Eanch =
∫

Ω
[A1

2 (p · ∇φ)2 + A2

2

(
|p|2|∇φ|2 − (p · ∇φ)2

)
]dx, (3.3.61)

where A1 and A2 (A1 > 0, A2 > 0) are the strength for the parallel and perpendicular

anchoring energy, respectively.

The kinetic energy of the mixture system is

Ekin =
∫

Ω

1
2ρ|u|

2dx, (3.3.62)

where ρ is the density of the mixture and u is the volume-averaged fluid velocity field.

Assuming (i). the phase field variable obeys the Cahn-Hilliard dynamics, (ii). the

nematic director follows an Allen-Cahn dynamics [12, 28, 67, 68], (iii) the two fluids

have a matching density ρ = 1 and viscosity η, we obtain the following dimensionless

governing system of equations:

∂tu + u · ∇u = −∇p+ η∆u +∇ · τe − φ∇µ− h∇d,

∇ · u = 0,

∂td + u · ∇d−W · d = aD · d +M1h,

∂tφ+∇ · (uφ) = M2∆µ,

(3.3.63)
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where

τe = −a
2(dh + hd) + 1

2(dh− hd),

µ = γ(∆φ− f(φ))−KφW (d)− (A1 − A2)∇ · ((d · ∇φ)d)

−A2∇ · (|d|2∇φ),

h = ∇ · (Kφ2

2 ∇d) + Kφ2

2 g′(d)− (A1 − A2)(d · ∇φ)∇φ− A2|∇φ|2d.

(3.3.64)

Here µ = δF
δφ

is the chemical potential [130], h = − δF
δp the molecular field, τe is

the elastic stress tensor associated with liquid crystal dynamics [125, 126], Dαβ =
1
2(∂βuα + ∂αuβ) is the rate of strain tensor, Wαβ = 1

2(∂βuα − ∂αuβ) is the vorticity

tensor, p is the hydrostatic pressure, 1/M1 is the relaxation time parameter of LC

director dynamics, M2 is the mobility parameter of the phase field function, a is a

geometry parameter of liquid crystal molecules and η is the volume-averaged viscosity.

Remark 3.3.1. When the two fluids have different densities with a relatively small

density difference, one can use the Boussinesq approximation [68, 121]. The case of

different viscosities can usually be dealt with in a straightforward manner by assuming

the viscosity is a linear or harmonic average of the phase function.

Throughout the paper, we assume the following boundary conditions

u|∂Ω = 0, ∇φ · n|∂Ω = 0, ∇µ · n|∂Ω = 0, ∇p · n|∂Ω = 0, (3.3.65)

with n the unit outward normal, which warrants the boundary effect will not con-

tribute to the energy dissipation. In fact, all results presented in this paper are valid

for periodic boundary conditions as well.

Notice the fact that this system is energy dissipative, which enables us to prove the

existence and uniqueness of the weak solution with certain smoothness by a standard

Galerkin procedure [23]. If we use E to denote the total energy density, its time rate
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of change is given by

dE
dt

= ∂
∂t

∫
Ω

(
1
2u2 + E

)
dx

=
∫

Ω u · ∂tu + δE
δφ

∂φ
∂t

+ δE
δd

∂d
∂t
dx

=
∫

Ω u ·
(
− u · ∇u−∇p+ η∆u− φ∇µ− h∇d +∇ · (−a

2(dh + hd)

+1
2(dh− hd)

)
+ µ(−∇ · (uφ) +M2∆µ)

−h(−u · ∇d + W · d + aD · d +M1h)dx

=
∫

Ω−∇ · (u
|u|2

2 ) + |u|2
2 ∇ · u−∇ · (pu) + p∇ · u−∇ · (µφu)

+∇ · (−a
2(dh + hd)u + 1

2(dh− hd)u) +∇ · (ηu∇u)− η|∇u|2

−M1|h|2 +∇ · (M2µ∇µ)−M2|∇µ|2dx

= −
∫

Ω(η|∇u|2 +M1|h|2 +M2|∇µ|2)dx.
(3.3.66)

Clearly, the parameters η, M1 and M2 affect the magnitude of the dissipation rate.

Decoupled semi-discrete scheme

One of the desirable properties for the discretized dissipative system to have is to

maintain its own energy dissipation law that is consistent with the energy law obeyed

by the continuous differential system. Practically, this is an indication for a good

approximation to the differential dissipative system. This type of numerical scheme

is known as the energy stable scheme. In the following, we will design a semi-discrete

energy stable scheme that addresses the following issues:

• the coupling of the velocity and pressure through the incompressible condition;

• the stiffness in the phase field equation and the director equation associated

with the interfacial width ε and the defect core size δ;

• the nonlinear couplings among the momentum transport equation, the phase

transport equation and the director equation.

31



www.manaraa.com

In doing so, we develop an energy stable scheme based on a stabilization technique

[98]. To prove energy stability of the scheme, we have to put some constraints on the

potential function f(φ) and g(p), i.e., they satisfy the following conditions: (i). f

and g have continuous second order derivatives, (ii). there exist constants L1 and L2

such that

max
|p|∈R3

|H(p)| ≤ L2, max
|φ|∈R
|f ′′(φ)| ≤ L1, (3.3.67)

where H(p) is the Hessian matrix of g(p).

One immediately notice that this condition is not satisfied by the usual double-

well potentials f(φ) = 1
ε2φ

2(φ − 1)2 and g(p) = 1
4η2 (|p|2 − 1)2. However, we can

modify f(φ) to quadratic growth outside of a physically meaningful interval [−M,M ]

without affecting the solution if the maximum norm of the initial condition φ0 is

bounded by M . Analogously, we can modify the function g outside a ball in R3 of

radius M . Therefore, it is common (cf. [49, 20, 98]) to consider the Cahn-Hilliard

equations with a modified double-well potential f̃(φ) and Allen-Cahn with a modified

g̃. In the following, we drop the tilde •̃ and assume both f and g satisfy the conditions

(i) and (ii) listed above. We now present the numerical scheme as follows.

The semi-discrete scheme

Given the initial conditions p0, φ0, u0 and p0 = 0, having computed pn, φn, un and

pn for n ≥ 0, we compute (pn+1, φn+1,un+1, pn+1) in the following sequence.

1. Step 1: update dn+1:

ḋn+1 = M1hn+1

ḋn+1 = dn+1−dn
δt

+ un? · ∇dn −Wn
? · dn − aDn

? · dn,

hn+1 = −Cn
1

(
dn+1 − dn

)
+∇ · (K2 (φn)2∇dn+1)− K

2 (φn)2g′(dn)

−(A1 − A2)(dn · ∇φn)∇φn − A2|∇φn|2dn+1,

∂d
∂n |∂Ω = 0,

(3.3.68)
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with

un? = un − δthn+1∇dn + δt∇ · (1−a
2 dnhn+1 − 1+a

2 hn+1dn),

Wn
? = 1

2

(
∇un? − (∇un? )T

)
, Dn

? = 1
2

(
∇un? + (∇un? )T

)
.

(3.3.69)

We impose an additional boundary condition un? |∂Ω = 0 in this step when

physical boundary conditions are imposed instead of the periodic boundary

condition. This condition sometimes is satisfied automatically if the liquid

crystal phase (denoted by φ = 1) is completely suspended inside Ω, namely,

φ|∂Ω = 0 and ∇φ|∂Ω = 0. By definition, hn+1|∂Ω = 0 and un? |∂Ω = un|∂Ω = 0.

Otherwise, this new boundary condition serves as a bona fide intermediate

boundary condition for dn+1.

2. Step 2: update φn+1:

φ̇n+1 = M2∆µn+1,

µn+1 = Cn
2 (φn+1 − φn) + Cn

3 (∆φn+1 −∆φn) + γ(−∆φn+1 + f ′(φn))

+φn+1W (dn+1)− (A1 − A2)∇ ·
(

(dn · ∇φn)dn+1
)

−A2∇ · (|dn+1|2∇φn+1),
∂φn+1

∂n |∂Ω = 0, ∂µn+1

∂n |∂Ω = 0,
(3.3.70)

with

φ̇n+1 = φn+1−φn
δt

+∇ ·
(

un??φn
)
,

un?? = un? − δtφn∇µn+1,

W (dn+1) = K
(

1
2 |∇dn+1|2 + g(dn+1)

)
.

(3.3.71)

3. Step 3: update un+1:

ũn+1−un
δt

+ (un · ∇)ũn+1 = η∆ũn+1 −∇pn − φn∇µn+1

−hn+1∇dn +∇ · (−a
2(dnhn+1 + hn+1dn) + 1

2(dnhn+1 − hn+1dn)),

ũn+1|∂Ω = 0.
(3.3.72)
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
un+1−ũn+1

δt
= −∇(pn+1 − pn),

∇ · un+1 = 0, un+1|∂Ω = 0.
(3.3.73)

In the above, Cn
1 , Cn

2 and Cn
3 are stabilizing parameters to be determined. The

above scheme is constructed by combining several effective approaches in the approx-

imation of Cahn-Hilliard equation [98], Navier-Stokes equations [36] and phase-field

models [93, 10].

Remark 3.3.2. A pressure-correction scheme [36] is used to decouple the computation

of the pressure from that of the velocity.

Remark 3.3.3. We note that the explicit discretization of f ′(φ) = 2
ε2φ(1− φ)(1− 2φ)

often leads to a severe restriction on the time step δt when ε� 1. Thus, we introduce

a stabilizing term to improve stability while preserving simplicity in (3.3.70), which

allows us to treat the nonlinear term explicitly without subject to any time step

constraint [93, 98, 94]. This stabilizing term introduces an error of order O(δt) in a

small region near the interface, the same order as the error introduced by treating

f(φ) explicitly; so the overall truncation error of the scheme is essentially the same

with or without the stabilizing term. A similar approach is applied to the director

equation for the treatment of g(p).

Remark 3.3.4. The scheme given by (3.3.68)-(3.3.73) is a fully decoupled, linear

scheme. Hence, one only needs to solve a series of elliptic equations, which can

be done very efficiently using fast solvers. Of course, some of these elliptic equations

may be of variable coefficients.

Remark 3.3.5. If we don’t study the embedded phase and boundary interaction, the

new intermediate boundary condition on dn+1 in practice can be avoided so long as

we don’t allow the embedded phase denoted by φ = 1 to touch the boundary. This

condition is unnecessary if we deal with a periodic boundary condition.

34



www.manaraa.com

We shall show next that the above scheme is energy stable unconditionally as-

suming each step can be solved uniquely.

Semi-discrete energy dissipation law

In this section, we prove that the scheme derived in the previous section is uncon-

ditionally energy stable. Instead of going directly to the proof, we first provide some

lemmas to help readers to better follow the details of the proof.

Lemma 3.3.1. Denote δφn+1 = φn+1 − φn and δδφn+1 = φn+1 − 2φn + φn−1. Then,

the following equalities hold,

2(φn+1 − φn, φn+1) = ‖φn+1‖2 − ‖φn‖2 + ‖φn+1 − φn‖2,

2(φn+1 − φn, φn) = ‖φn+1‖2 − ‖φn‖2 − ‖φn+1 − φn‖2,

2(∇φn+1 −∇φn,∇φn+1) + ‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2,

2(∇φn+1 −∇φn,∇φn) = ‖∇φn+1‖2 − ‖∇φn‖2 − ‖|∇φn+1 −∇φn‖2.

(3.3.74)

Proof. This is trivial. We can obtain the equalities by simply expanding the inner

product on the right hand side and then combining the common terms.

Lemma 3.3.2. If F ∈ C2(Rk), where k is the dimension, and

max
x∈Rk

|F ′′(x)| < L, (3.3.75)

∀xn+1,xn ∈ Rk, the following inequality holds,

(xn+1 − xn, F ′(xn)) ≥ (F (xn+1)− F (xn), 1)− L‖xn+1 − xn‖2. (3.3.76)

Proof. Notice the fact,(
F (xn+1)− F (xn), 1

)
=

( ∫ xn+1

xn F ′(x)dx, 1
)

=
(

(xn+1 − xn)F ′(xn) +
∫ xn+1

xn (xn+1 − x)F ′′(x)dx, 1
)

≤
(

xn+1 − xn, F ′(xn)
)

+ L‖xn+1 − xn‖2.

(3.3.77)
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Then, we obtain

(xn+1 − xn, F ′(xn)) ≥ (F (xn+1)− F (xn), 1)− L‖xn+1 − xn‖2. (3.3.78)

Lemma 3.3.3. The following identity holds,
∫

Ω
(v · ∇)u · udx = 0, (3.3.79)

provided that n · v|Γ = 0, v and u are sufficiently smooth and ∇ · v = 0, where n is

the unit external normal of the surface.

Proof. It is straightforward to show the following:

∫
Ω(v · ∇)u · udx =

∫
Ω∇ · (v

|u|2
2 )− |u|

2

2 ∇ · vdx

=
∫
∂Ω n · v

|u|2
2 ds

= 0.

(3.3.80)

Lemma 3.3.4. If Cn
1 ,Cn

2 and Cn
3 satisfy the following conditions,

Cn
1 ≥ KL2

2 ‖φ
n‖2
∞ + 1

2 max(A1 − 2A2, 0)‖∇φn‖∞,

Cn
2 ≥ γL1,

Cn
3 ≥ 1

2 max(A1 − 2A2, 0)‖dn+1‖∞ − γ
2 ,

(3.3.81)

then

(φn+1 − φn, µn+1)− (dn+1 − dn,hn+1) ≥ F n+1 − F n, (3.3.82)

where F n is the semi-discrete free energy defined as

F n = F n
b + F n

d + F n
anch,

F n
b = γ

(
1
2 |∇φ

n|2 + f(φn), 1)
)
,

F n
d =

(
1
2(φn)2W (dn), 1

)
, W (dn) = K

(
1
2 |∇dn|2 + g(dn)

)
,

F n
anch = A1

2

(
(∇φn · dn)2, 1

)
+ A2

2

(
|dn|2|∇φn|2 − (∇φn · dn)2, 1

)
.

(3.3.83)
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Proof. Using the definition of un+1 in (3.3.70) and hn+1 in (3.3.68), the first term on

the left hand in (3.3.82) can be expanded as

(φn+1 − φn, µn+1) = Cn
2 ‖φn+1 − φn‖2 + Cn

3 ‖∇φn+1 −∇φn‖2

+γ
2

(
‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2

)
+ γ(φn+1 − φn, f ′(φn))

+
(
φn+1 − φn, φn+1W (dn+1)

)
−
(
φn+1 − φn, (A1 − A2)∇ ·

(
(dn · ∇φn)dn+1

)
+
(
φn+1 − φn, A2∇ · (|dn+1|2∇φn+1)

)
.

(3.3.84)

The second term on the left hand in (3.3.82) can be rewritten into the following

−(dn+1 − dn,hn+1) = Cn
1 ‖dn+1 − dn‖2 − (dn+1 − dn,∇ · (K2 (φn)2∇dn+1))

+(dn+1 − dn, K2 (φn)2g′(dn)) + (A1 − A2)(dn+1 − dn, (dn · ∇φn)∇φn)

+A2(dn+1 − dn, |∇φn|2dn+1).
(3.3.85)

We denote

T = (φn+1 − φn, µn+1),

T0 = Cn
2 ‖φn+1 − φn‖2 + Cn

3 ‖∇φn+1 −∇φn‖2,

T1 = γ(φn+1 − φn, f ′(φn)) + γ
2 (‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2),

T2 = (φn+1 − φn, φn+1W (dn+1)),

T3 = −(A1 − A2)
(
φn+1 − φn,∇ · ((dn · ∇φn)dn+1)

)
,

T4 = −A2

(
φn+1 − φn,∇ · (|dn+1|2∇φn+1)

)
.

(3.3.86)

In addition, we introduce

P = −(dn+1 − dn,hn+1),

P0 = Cn
1 ‖dn+1 − dn‖2,

P1 = −(dn+1 − dn,∇ · (K2 (φn)2∇dn+1)),

P2 = (dn+1 − dn, K2 (φn)2g′(dn)),

P3 = (A1 − A2)(dn+1 − dn, (dn · ∇φn)∇φn),

P4 = A2(dn+1 − dn, |∇φn|2dn+1),

(3.3.87)

37



www.manaraa.com

such that

T =
4∑
i=0

Ti, P =
4∑
i=0

Pi. (3.3.88)

Next, we analyze these terms one-by-one. For T1, we have,

T1 = γ(φn+1 − φn, f ′(φn)) + γ
2 (‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2)

= γ(f(φn+1)− f(φn), 1)− γL1‖φn+1 − φn‖2

+γ
2 (‖∇φn+1‖2 − ‖∇φn‖2 + ‖∇φn+1 −∇φn‖2),

(3.3.89)

i.e.

T1 ≥ F n+1
b − F n

b + γ

2‖∇φ
n+1 −∇φn‖2 − γL1‖φn+1 − φn‖2. (3.3.90)

For T2, we have,

T2 = (φn+1 − φn, φn+1W (dn+1))

= (1
2(φn+1)2 − 1

2(φn)2,W (dn+1)) + 1
2

(
(φn+1 − φn)2,W (dn+1)

)
≥ (1

2(φn+1)2 − 1
2(φn)2,W (dn+1)),

(3.3.91)

if W (d) ≥ 0, ∀d ∈ R3, which is true in our case.

For P1, we have

P1 = (∇dn+1 −∇dn, K2 (φn)2∇dn+1)

= (K2 (φn)2, 1
2(∇dn+1)2 − 1

2(∇dn)2) + (K2 (φn)2, (∇dn+1 −∇dn)2)

≥ (K2 (φn)2, 1
2(∇dn+1)2 − 1

2(∇dn)2).

(3.3.92)

For P2, we use Lemma 3.3.2 and obtain

P2 ≥ (K2 (φn)2, g(dn+1)− g(dn))− (K2 (φn)2, L2(dn+1 − dn)2)

≥ (K2 (φn)2, g(dn+1)− g(dn))− L2K
2 ‖(φ

n)2‖∞‖dn+1 − dn‖2.
(3.3.93)

Combining T2, P1 and P2, we obtain

T2 + P1 + P2 ≥ F n+1
d − F n

d −
L2K

2 ‖(φn)2‖∞‖dn+1 − dn‖2. (3.3.94)
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Combining T3 and P3, we have

T3 + P3

= (A1 − A2)
((

dn+1 − dn, (dn · ∇φn)∇φn
)

−
(
φn+1 − φn,∇ ·

(
(dn · ∇φn)dn+1

)))
= (A1 − A2)

((
dn+1 − dn, (dn · ∇φn)∇φn

)
+
(
∇φn+1 −∇φn, (dn · ∇φn)dn+1

))
= (A1 − A2)

(
(dn · ∇φn,dn+1 · ∇φn+1)− (dn · ∇φn,dn · ∇φn)

)
= A1−A2

2

(
‖dn+1 · ∇φn+1‖2 − ‖dn · ∇φn‖2 − ‖dn+1 · ∇φn+1 − dn · ∇φn‖2

)
.

(3.3.95)

Adding T4 with P4, we have

T4 + P4

= A2

(∇φn+1 −∇φn, |dn+1|2∇φn+1) + (dn+1 − dn, |∇φn|2dn+1)


= A2
2

(|∇φn+1|2 − |∇φ|2 + |∇φn+1 −∇φn|2, |dn+1|2
)

+

(
|dn+1|2 − |dn|2 + |dn+1 − dn|2, |∇φn|2

)
= A2

2

(
|dn+1|2|∇φn+1|2 − |dn|2|∇φn|2, 1

)
+ A2

2 (|∇φn+1 −∇φn|2, |dn+1|2)

+A2
2 (|dn+1 − dn|2, |∇φn|2).

(3.3.96)

Combining T3, T4, P3 and P4, we have

T3 + T4 + P3 + P4 = F n+1
anch − F n

anch − A1−A2
2 (‖dn+1 · ∇φn+1 − dn · ∇φn‖2)

+A2
2 (|∇φn+1 −∇φn|2, |dn+1|2) + A2

2 (|dn+1 − dn|2, |∇φn|2).
(3.3.97)

Note that

−‖dn+1 · ∇φn+1 − dn · ∇φn‖2

= −‖dn+1 · ∇φn+1 − dn+1 · ∇φn + dn+1 · ∇φn − dn · ∇φn‖2

≥ −‖dn+1 · (∇φn+1 −∇φn)‖2 − ‖∇φn · (dn+1 − dn)‖2

≥ −(|dn+1|2, |∇φn+1 −∇φn|2)− (|∇φn|2, |dn+1 − dn|2).

(3.3.98)
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Then, we have

T3 + T4 + P3 + P4 ≥ F n+1
anch − F n

anch − 1
2 max(A1 − 2A2, 0)(

‖(dn+1)2‖∞‖∇φn+1 −∇φn‖2 + ‖(∇φn)2‖∞‖dn+1 − dn‖2
)
.

(3.3.99)

Adding up (3.3.90),(3.3.94), (3.3.99), T0 and P0, we have

(φn+1 − φn, µn+1)− (dn+1 − dn,hn+1)

= ∑4
i=0 Ti +∑4

i=0 Pi

≥ F n+1 − F n + Cn
2 ‖φn+1 − φn‖2 + Cn

3 ‖∇φn+1 −∇φn‖2 + Cn
1 ‖dn+1 − dn‖2

+γ
2‖∇φ

n+1 −∇φn‖2 − γL1‖φn+1 − φn‖2 − KL2
2 ‖φ

n‖2
∞‖dn+1 − dn‖2

−1
2 max(A1 − 2A2, 0)

(
‖(dn+1)2‖∞‖∇φn+1 −∇φn‖2

+‖(∇φn)2‖∞‖dn+1 − dn‖2
)

= F n+1 − F n + (Cn
1 − KL2

2 ‖φ
n‖2
∞ − 1

2 max(A1 − 2A2, 0)‖∇φn‖∞)

‖dn+1 − dn‖2 + (Cn
2 − γL1)‖∇φn+1 −∇φn‖2

+(Cn
3 + γ

2 −
1
2 max(A1 − 2A2, 0)‖dn+1‖∞)‖∇φn+1 −∇φn‖2.

(3.3.100)

By the assumption, we have,

Cn
1 ≥ KL2

2 ‖φ
n‖2
∞ + 1

2 max(A1 − 2A2, 0)‖∇φn‖∞,

Cn
2 ≥ γL1,

Cn
3 ≥ 1

2 max(A1 − 2A2, 0)‖dn+1‖∞ − γ
2 .

(3.3.101)

Finally, we arrive at

(φn+1 − φn, µn+1)− (dn+1 − dn,hn+1) ≥ F n+1 − F n. (3.3.102)

Theorem 3.3.1. Under the conditions given in Lemma 3.3.4, the scheme given by

(3.3.68)-(3.3.73) admits a unique solution satisfying the following semi-discrete energy

dissipation law:

1
2‖u

n+1‖2 + F n+1 + δt2

2 ‖∇p
n+1‖2 + δt

(
η‖∇ũn+1‖2 +M2‖∇µn+1‖2

+M1‖hn+1‖2
)
≤ 1

2‖u
n‖2 + F n + δt2

2 ‖∇p
n‖2,

(3.3.103)
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where the semi-discrete energy F n is defined in (3.3.83).

Proof. From the definition of un? in equation (3.3.69) and un?? in equation (3.3.71), we

can rewrite the momentum equation as follows

ũn+1 − un??
δt

+ (un · ∇)ũn+1 − η∇ũn+1 +∇pn = 0. (3.3.104)

Taking the inner-product of (3.3.104) with 2δtũn+1, we obtain,

‖ũn+1‖2 − ‖un??‖2 + ‖ũn+1 − un??‖2 + 2ηδ‖∇ũn+1‖2 + 2δt(∇pn, ũn+1) = 0. (3.3.105)

To deal with the pressure term, we take the inner product of (3.3.73) with 2δt2∇pn

to arrive at

δt2(‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇pn+1 −∇pn‖2) = 2δt(ũn+1,∇pn). (3.3.106)

Taking the inner product of (3.3.73) with un+1, we obtain

‖un+1‖2 + ‖un+1 − ũn+1‖2 = ‖ũn+1‖2. (3.3.107)

It follows from (3.3.73) directly that

δt2‖∇pn+1 −∇pn‖2 = ‖ũn+1 − un+1‖2. (3.3.108)

Combining (3.3.105)-(3.3.108), we obtain

‖un+1‖2 − ‖un??‖2 + ‖ũn+1 − un??‖2 + δt2(‖∇pn+1‖2 − ‖∇pn‖2)

+2ηδt‖∇ũn+1‖2 = 0.
(3.3.109)

If we take the inner product of (3.3.68) with 2δthn+1, we get

2δtM1‖hn+1‖2 − 2δt(hn+1, (un? · ∇)dn)− 2(dn+1 − dn,hn+1)

+2δt
(

hn+1, (Wn
? + aDn

? ) · dn
)

= 0.
(3.3.110)

Taking the inner product of (3.3.69) with 2un? , we obtain

‖un?‖2 − ‖un‖2 + ‖un? − un‖2 − 2δt(hn+1∇dn,un? ))

−δt
(
∇ · (1−a

2 dnhn+1 − 1+a
2 hn+1dn),un?

)
= 0.

(3.3.111)
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Adding (3.3.110) with (3.3.111) and noticing the fact that
(
∇ · (1− a

2 dnhn+1 − 1 + a

2 hn+1dn),un?
)

=
(

hn+1, (Wn
? + aDn

? ) · dn
)
, (3.3.112)

we arrive at

‖un?‖2 − ‖un‖2 + ‖un? − un‖2 + 2δtM1‖hn+1‖2 − 2(dn+1 − dn,hn+1) = 0. (3.3.113)

If we take the inner product of (3.3.70) with 2δtµn+1, we obtain

2(φn+1 − φn, µn+1) + 2δt(∇ · (φnun??), µn+1) + 2M2δt‖∇µn+1‖2 = 0. (3.3.114)

Taking the inner product of (3.3.71) with 2un??, we have

‖un??‖2 − ‖un?‖2 + ‖un?? − un?‖2 + 2δt(un??, φn∇µn+1)) = 0. (3.3.115)

Adding (3.3.114) with (3.3.115), we arrive at

‖un??‖2−‖un?‖2 + ‖un??−un?‖2 + 2(φn+1−φn, µn+1) + 2M2δt‖∇µn+1‖2 = 0. (3.3.116)

Finally, adding up the equations (3.3.109),(3.3.113), (3.3.116) and dividing both

side by 2, we obtain

1
2

(
‖un+1‖2 − ‖un‖2 + ‖ũn+1 − un??‖2

)
+ 1

2δt
2(‖∇pn+1‖ − ‖∇pn‖2)

+ηδt‖∇ũn+1‖2 + δtM2‖∇µn+1‖2 + δtM1‖hn+1‖2

+(φn+1 − φn, µn+1)− (dn+1 − dn,hn+1) = 0.

(3.3.117)

According to Lemma 3.3.4

(φn+1 − φn, µn+1)− (dn+1 − dn,hn+1) ≥ F n+1 − F n, (3.3.118)

hence, we finally obtain

1
2‖u

n+1‖2 + F n+1 + δt2

2 ‖∇p
n+1‖2 + δt

(
η‖∇ũn+1‖2 +M2‖∇µn+1‖2

+M1‖hn+1‖2
)
≤ 1

2‖u
n‖2 + F n + δt2

2 ‖∇p
n‖2.

(3.3.119)

42



www.manaraa.com

Chapter 4

Mathematical Modeling and Simulations of

Biofilms Dynamics

Bacteria are ubiquitous in our daily life. As human beings living in a society,

in their natural environments, bacteria do not exist as isolated cells but grow and

survive in organized communities, which is known as biofilms.

In this chapter, we first briefly review the biological background of biofilms and

related theoretical models in the literature. After that, we show a general modeling

framework for studying biofilm dynamics. In particular, the antimicrobial persistence

of biofilms and quorum sensing in biofilms are investigated.

4.1 Background of biofilms research

Biofilms are usually formed on moisture surfaces by bacteria colonies. And it

is commonly perceived by the medical community that biofilms are responsible for

many diseases or ailments associated with chronic infections[90]. Unlike a planktonic

bacterium, biofilms are always hard to be eradicated by the standard antimicrobial

treatment [58]. Thus, an understanding of the mechanism that underlies biofilm per-

sistence to antimicrobial agents can greatly enhance therapeutic treatment of diseases

related with biofilms.
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(a) (b)

Figure 4.1: Biofilm of Pseudomonas at different scales. (A) Scanning electron mi-
croscopy images of Pseudomonas aeruginosa isolated attaching to glass surfaces; (B)
CLSM images of GFP-tagged Pseudomonas aeruginosa biofilms in a glass capillary
flow reactor 72h post-inoculation, shwoing variation in biofilm structure. Images are
from [21].

Biofilm development

Conceptually, biofilms could be defined as an aggregate of micro-organisms in

which cells adhere to each other on biotic or abiotic surfaces. These adherent cells

are frequently embedded within a self-produced slimy, glue-like matrix of extracel-

lular polymeric substances (EPS), which takes the role as facilities in biofilms. Be-

sides water, the main components in biofilms are microbial cells and EPS. In Figure

4.1(A), scanning electron microscopy images for biofilms of Pseudomonas aerugi-

nosa are shown. And Confocal laser scanning microscopy image of mushroom shape

biofilms are shown in Figure 4.1(B).

The basic process of biofilm development is summarized as five stages, as shown in

Figure 4.2(A). Mainly, the bacteria would go through a cycle of attachment, growth

and dispersal (or death). It has been suggested that biofilm development is influenced

by a number of different process such as adhesion, detachment, nutrient transport,

quorum sensing, cell death and active dispersal, as well as other stresses from sur-
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(a) Biofilm formation (b) Biofilm migration

(c) Mechanisms of biofilm tolerance

Figure 4.2: Biofilm development. This figure shows cartoons of biofilm develop-
ment. (a) Five stages of biofilm development: (1) attachment; (2) lag-stage; (3)
exponential-stage; (4) stationary stage; (5) dispersal or detachment (from [76]); (b)
biofilm migration under hydrodynamic shear (from Center for Biofilm Engineering at
MSU); (c) mechanisms of biofilm tolerance to antimicrobial agents ( from Center for
Biofilm Engineering at MSU).

roundings, saying hydrodynamic shear. Under hydrodynamic shear, various pattern

formations have been observed, namely streaming, rippling and rolling. When the

hydrodynamic stress is high, biofilm detachment, rolling or seeding dispersal might

happen, as shown in Figure 4.2(B).

Quorum-sensing in biofilms

Though bacteria are single cellular, bacteria in biofilms always show multi-cellular

phenomenons. One particular reason is bacteria in biofilms can communicate and co-

operate by secreting some dilutable signaling molecule and sensing its concentration,

which mechanism is known as quorum sensing (QS).
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In details, these bacteria will secrete some QS molecules (known as autoinducers)

and they also have a receptor, which can bind the QS molecules secreted by other

bacteria. Once the concentration of the autoinducers has reached certain thresh-

old (which is likely happen where there are dense bacteria, since otherwise the QS

molecule will diffuse aways without reaching the threshold), the binding between the

receptor with the inducer will activate certain gene transcription. Quorum sensing has

been shown to be responsible for mediating a variety of social activities in biofilms,

which include the secretion of diverse byproducts, biofilm growth [32], swarming

motility and virulence gene expressions [86], biofilm dispersion [16], antimicrobial re-

sistance [110] and so on. Especially, the phenomenon of quorum sensing regulating

expopolysacharride production during biofilm formation has been widely reported

[116, 112, 71].

Antimicrobial tolerance in biofilms

Biofilms are known to be tolerance to antimicrobial treatment. Besides gene

mutations, which is out scope of this thesis, there are several hypothesis, as shown in

Figure 4.2(C), depending on specific biofilms.

The first and most straightforward explanation for the failure of antimicrobial

treatment of biofilms is the slow-penetration induced by the extra cellular substances

(EPS). Basically, EPS is believed to act as a protective barrier to prevent the an-

timicrobial agents from penetrating deep into the biofilm region, either by reacting

with antimicrobial agents [101] or by simply slowing down the diffusion rate via its

densely distributed network meshes [107].

Besides, the common recognition on this antimicrobial tolerance lays on the ex-

istence of a small portion of bacteria, which is in dormant status and tolerance to

antimicrobial agents, usually called persister. It is commonly admitted that persis-

ter is different from drug-resistant mutants, whose antibiotic tolerance is heritable.
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From the clinical point of view, understanding the mechanism of persister forma-

tion would be essential for biofilm control and thereby impact on the treatment of

diseases responsible by biofilms. For review papers on mechanisms underlying the

persister formation, readers are referred to the works by Kim Lewis [58] and [59]. As

dormant variants of regular bacterial cells, which doesn’t undergo genetic changes, it

is convinced that persister are converted from regular cells due to stresses [3], such

as nutrient depletion [7, 2], existence of antimicrobial agents [84] and so on. Later,

when the environment is tolerable, say nutrient is sufficient or the concentration of

antimicrobial agents drops under a certain threshold value, biofilms can relapse [9],

which implies that persister convert back into susceptible bacteria for regrowth.

A review of existing mathematical models

From the mathematical perspective, many models have been proposed trying to

interpret experimental observations on biofilm structures and function. We provide

a brief review in this subsection. Interested readers can refer to [50, 114] for further

details. In terms of length scale we are focusing on, the mathematical models in

literature can be categorized into: (i) microscopic scale models (agent based models),

such as [1]; (ii) mesoscopic scale models (kinetic theory models), such as [113] and

(iii) macroscopic scale models (continuum theories), such as [130].

On the issue of biofilm persistence to antimicrobial agents, simple mathematical

models have also been developed to test certain mechanisms for persister formation

based on the experimental evidence that supports the concept of persister. For in-

stance in [88], the author claims using a simple mathematical model that persister

formation can lead to higher bacterial persistence to antimicrobial agents than those

grown in plancktonic culture. In [40], a 3D agent-based model for biofilm dynamics

under antimicrobial treatment was developed, in which it showed that substrate lim-

itation can contribute to the persistence of biofilms to antimicrobial agents. Cogan
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has worked on possible mechanisms of persister formation using time-dependent, but

spatially homogeneous models recently [18, 19, 54].

Concerning coupling biofilm growth with quorum sensing features, several math-

ematical models have been developed. The dependence of quorum sensing on the

depth of a growing biofilm is discussed in [17]. In [77], the evolution of quorum sens-

ing in bacterial biofilms is simulated by an individual-based model. In [81], quorum

sensing regulation and its heterogeneity in Pseudomonas syringae on leaves is studied

by treating it as a non-negative stochastic process. Recently, [72] proposed a single

cell spatial model for quorum sensing. The inhibition of quorum sensing is modeled

by [29] as a stochastic process on the level of individual cells, claiming he time at

which treatment is initiated is crucial for effective prevention of quorum sensing. The

hydrodynamic effects on quorum sensing induction have also been investigated the-

oretically. A 2D partial differential equation model coupled with the Stokes flow is

proposed in [30] and later they extended this model [31] and proved its well-posedness

in [103]. Another 2D continuum model with Stokes background flow is proposed in

[111], where the shape of biofilms at the onset of the hydrodynamic shear is studied.

Recently, modeling biofilms as multiphase complex fluids has emerged as a promis-

ing approach to address some complex and intriguing issues associated with biofilm

dynamics[117, 130], where bacteria are regarded as colloids and the EPS is modeled as

a polymer gel. This approach is promising, as from experimental observation, biofilms

behave like viscoelastic fluids. In such an approach, a complex fluid model can be de-

vised to analyze the structure formation and function of biofilms in a hydrodynamical

setting. In this research direction, the work of Wang et al.[130, 131] represents some

latest development. They developed hydrodynamic models for biofilm formation and

flow-biomass interaction by treating the biofilm system as a single fluid model with

multiple effective fluid components. And in text section, we will extend their work

to study quorum sensing and antimicrobial persistence in biofilms.
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4.2 A 3D numerical study of antimicrobial persistence in heteroge-

neous multi-species biofilms

Mathematical model formulation

To make our current work consistent with the previous models [130, 131], we

adopt the same notations here. Recall that in [130], φn is used to denote the volume

fraction of biomass (bacteria + EPS) and φs the volume fraction of the effective

solvent (water+nutrient). By assuming incompressibility of the fluid mixture, it

follows that

φn + φs = 1. (4.2.1)

In order to analyse the dynamics inside biofilms with different bacteria pheno-

types, as well as EPS, further refinement of the model is necessary. In this paper,

we denote the volume fraction of bacteria and EPS by φb and φp, respectively. In

addition, the bacteria are further categorized into three different phenotypes accord-

ing to their reaction to antimicrobial treatment: the susceptible bacteria, which are

susceptible to antimicrobial treatment, the persister bacteria, which are persistent to

antimicrobial treatment and the dead bacteria, which lose mortality after antimicro-

bial treatment. Their volume fractions are denoted, respectively, as φbs, φbp and φbd.

I.e.,

φn = φb + φp, φb = φbs + φbp + φbd. (4.2.2)

For hydrodynamic properties, we use ρb, ρp and ρs to denote the density of bacte-

ria, EPS and solvent, and vb, vp and vs for the velocity of bacteria, EPS, and solvent,

respectively. Then, the volume averaged velocity and density are given respectively

by

v = φbvb + φpvp + φsvs, ρ = φbρb + φpρp + φsρs. (4.2.3)

In this model, we make a simplifying assumption that all components in the biomass

including the bacteria and EPS share the same density and the same property in terms
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of hydrodynamic interaction with solvent. The modified Flory-Huggins mixing free

energy with a conformational entropy is adopted to model the molecular interaction

(molecular level mixing) in this biological system [130],

f = kBT

(
γ1

2 ‖∇φn‖
2 + γ2

(
φn
N

lnφn + φs lnφs + χφnφs

))
, (4.2.4)

in which γ1 and γ2 parametrize the strength of the conformation entropy and bulk

mixing free energy, respectively, χ is the mixing parameter, N is the extended poly-

merization index for biomass, kB is the Boltzmann constant and T is the absolute

temperature. This free energy can be easily extended into multiple components by

proposing every component interact with solvent distinctly. Readers can read our

related work [64, 65] for more details. However, in this paper, we keep this form for

simplicity.

Besides the biomass components, we also introduce some functional components,

whose molecular weight is small compared with the components comprising the

biomass. For these molecules, we neglect their mass in the model, but keep their

biochemical effects. We include the nutrient, QS molecules, antimicrobial agents

and a functional protein (named growth factor in this paper), which represents the

extra-cellular RNA or enzymes that are necessary for bacteria proliferation and QS

molecules production, in this class of functional biomass components. Their concen-

trations are denoted as C, H, A and Q, respectively. To help the reader to better

understand the biofilm system we are studying in this paper, a schematic portrait of

a biofilm colony and its effective components are shown in Figure 4.3.

Transport equations for biomass

Given the mixing free energy density functional f in equation (4.2.4), the "ex-

tended" chemical potentials with respect to each component can be calculated as
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Figure 4.3: A schematic portrait of effective components in the biofilm system studied.
The blue bar denotes the solid substrate, where the biofilm is attached.

follows

µbs = δf

δφbs
, µbp = δf

δφbp
, µbd = δf

δφbd
, µp = δf

δφp
. (4.2.5)

The transport of each biomass component is assumed to be convected by the volume-

averaged velocity as well as driven by the osmotic pressure. Hence, we propose the

transport equation for the volume fraction of each biomass component as governed

by a Cahn-Hilliard equation with reactive dynamics,

∂tφbi +∇ · (φbiv) = ∇ · (λbiφbi∇µbi) + gbi, i = s, p, d.

∂tφp +∇ · (φpv) = ∇ · (λpφp∇µp) + gp,
(4.2.6)

where gbi, i = s, p, d and gp are the reactive terms for the bacteria and EPS, re-

spectively; λbi, i = s, p, d and λp are the mobility parameters for the transporting

components. Notice that, if we add up the equations in (4.2.6), we end up with

∂tφn +∇ · (φnv) = ∇ ·
(
λ∇ δF

δφn

)
+ gn, (4.2.7)

where the motility parameter and reactive term are given respectively by

λ = λbsφbs + λbpφbp + λbdφbd + λpφp,

gn = gbs + gbp + gbd + gp.
(4.2.8)
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Thus, this is consistent with the model developed in [130] for the two component

case. With the detailed transport equations, we define the velocity for the bacteria,

EPS, and solvent, respectively, as follows:

vb = v− λbsφbs∇µbs+λbpφbp∇µbp+λbdφbd∇µbd
φb

, if φb 6= 0,

vp = v− λpφp∇µp,

vs = 1
φs

(v− vbφb − vpφp).

(4.2.9)

Here, we assume the bacteria, regardless whether they are live or dead, persisters or

susceptible cells, and EPS mix with the solvent due to the osmotic pressure equally.

In other word, in this simplified model, the motility of each biomass component is

assumed the same, although the model can be systematically modified for cases of

different motilities as we did in our previous work if necessary [64].

For reactive kinetics, we assume both susceptible bacteria and persisters can pro-

liferate following a logistic model with the growth rate regulated by the concentration

of a regulatory protein [4], antimicrobial agents [11] and nutrient, whose concentra-

tions are denoted by Q, A and C respectively. The susceptible and the persister cells

can be converted into each other [3]. The rate of conversion from the susceptible cell

to the persister is denoted as bsp and the inverse conversion rate is denoted as bps.

The conversion rate is usually nonlinear, and highly correlated with the existence

of antimicrobial agents and availability of nutrient supply. We choose them as con-

stants for simplicity in this study. In addition, we denote the natural death rate for

the susceptible bacteria by rbs. The antimicrobial agent kills susceptible and persis-

ter cells at different rates, which are denoted as c3, c12, respectively. The killing rate

for persisters is presumably very low [48] (which is the reason why they are named

persisters). Summarizing the mechanisms assumed above, we propose the reactive
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terms for susceptible bacteria and persisters as follows,

gbs = c2
Q2

k2
Q+Q2

k2
12

A2+k2
12

C
C+k2

(1− φbs
Smax

)φbs

−bspφbs + bpsφbp − rbsφbs − c3A
A+k3

φbs,

gbp = c4
Q2

k2
Q+Q2

k2
12

A2+k2
12

C
C+k2

(1− φbp
Pmax

)φbp + bspφbs − bpsφbp − c12A
A+k3

φbp,

(4.2.10)

where Smax and Pmax are the carrying capacity for the susceptible and persister cells,

respectively, c2, c4, k12, k3, kQ are model parameters. The regulatory protein (Q),

which we call it the growth factor or functional molecule, is a proxy for an ensemble

of regulatory proteins that regulates the growth of live bacteria. Its contribution

to the growth rate of bacteria is given by a Hill model. The antimicrobial agent

clearly reduces the bacterial growth rate. In this model, we assume that the limiting

effect is given by a factor inversely proportional to the square of its concentration.

This reflects the switching effects when the concentration reaches a certain threshold,

where power two controls the steepness of the switch curve. This choice is made

based on our numerical fitting in [100]. The contribution of nutrient to the growth is

given by a monod model that we have employed in our previous work and in many

others’ work as well.

The dead bacterial reactive rate is governed by the following reaction equation:

gbd =
(
rbs + c3A

A+ k3

)
φbs + c12A

A+ k3
φbp −

rdpk13

k13 + A
φbd, (4.2.11)

where, on the right hand side, the first two terms are the growth terms due to the

death of susceptible and persister cells, respectively, and the last term represents

the breaking down or dissolution of dead bacteria into EPS and solvent components

due to cell lysis [5]. Here rdp is the maximum dissolution rate of dead bacteria, and

k3, k13 are two half salutation rates. The dissolution rate is a decreasing function

of the concentration of the antimicrobial agent. This reflects that during antimi-

crobial treatment, as the metabolism of live cell decreases due to the existence of

antimicrobial agents, cell lysis is compressed.
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For the EPS production, we consider that live bacteria produce EPS with a growth

rate affected by the concentration of nutrient and quorum-sensing molecules [116, 112,

71]. The mechanism is effectively modeled by a Hill type kinetic equation. In addition,

we require that EPS concentration would not exceed a threashold. The dissolved dead

bacteria would attached to EPS meshwork, which contributes to the second term in

the following reactive equation. The reactive equation is thus proposed as follows:

gp = c5(φbs + φbp)
C

C + k2

H2

H2 + k2
9
(1− φp

Emax
) + rdpk13

k13 + A
φbd. (4.2.12)

Here the first part is the gain of EPS due to the live bacteria and the second part is

the gain from the dead bacterial conversion; c5 is the maximum EPS production rate

due to live bacteria, k2, k9 are two half salutation constants and Emax is the carrying

capacity for the EPS in the biofilm.

Transport equations for functional components

In addition to the biomass and effective solvent, there are functional components

whose molecules are so small that their mass is negligible compared to the other

biomass components. However, their chemical and biological effects are retained in

the model. Thus, instead of tracking their volume fractions, we account for their

concentrations instead. These molecules are nutrient, quorum sensing molecules,

antimicrobial agents, as well as the functional protein or the growth factor, whose

concentration are denoted as C, H, A and Q, respectively.

In our model formulation, the nutrient (C) is assumed to be convected with sol-

vent. Its governing equation is given by a convection-diffusion-reaction equation with

varying diffusion coefficient, i.e.,

∂(φsC)
∂t

+∇ · (vφsC) = ∇ · (Dcφs∇C)− c7(φbs + φbp + φbd)
C

C + k2
, (4.2.13)

where Dc is the diffusion rate and c7 is the maximum nutrient consumption rate

by bacteria. In particular, oxygen is normally regarded as the main component in
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the nutrient for the biofilm formation. Since the molecular mass of the oxygen is

relatively small, it can penetrate EPS and the membrane of cells equally. Therefore,

the diffusion coefficient of oxygen in biofilms is assumed a decreasing function of φn

as follows,

Dc = Dc0
2(1− φn)

2 + φn
, (4.2.14)

where Dc0 is the diffusion rate of nutrient in pure solvent. This diffusion coefficient

accounts for the barrier effect of the biomass to the diffusion of small molecular

substances.

Similar to nutrient, the antimicrobial agent is also treated as a phantom material

whose mass is neglected while the chemical effect is retained. The transport equation

for antimicrobial agents is proposed as follows

∂(φsA)
∂t

+∇ · (Avφs) = ∇ · (Daφs∇A)− c8(φbs + φbp)
A

k8 + A
− raA, (4.2.15)

where Da is the diffusion coefficient of antimicrobial agents, and c8 is the decay rate

due to drug consumption, k8 is a half saturation constant, and ra is the natural

decay rate of the antimicrobial efficacy. In our experiment, the antimicrobial agent is

CHX, which loses half of its efficacy in one week. Since antimicrobial molecules are

bigger molecules compared to nutrient molecules. Biomass, such as the membrane of

live bacteria and EPS, as well as dead cells, can prevent antimicrobial agents from

penetrating deeper into the biofilm colony. Thus, its diffusion rate is approximated

by the Hinson Model [39],

Da = Da0
2(1− φb)

2 + φb

1
φs + φp

Dpr

, (4.2.16)

where Da0 is the diffusion rate of antimicrobial agents in pure solvent, and Dpr is a

parameter adjusting the slow penetrating effects due to the presence of EPS.

For quorum sensing molecules, we propose that its growth depends on the con-

centration of susceptible bacteria and the growth factor, while, in the meantime,
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it saturates when reaches a maximum level. Besides, the existence of antimicrobial

agents can accelerate its saturation. Thus, the transport equation for quorum sensing

molecules (H) is given by

∂(φsH)
∂t

+∇ · (vφsH) = ∇ · (φsDh∇H) + cAφbs
Q2

k2
Q +Q2 (1− H

h0
), (4.2.17)

where Dh is the isotropic diffusion rate of QS molecules, cA is the production rate

of quorum sensing molecules due to bacteria, kQ is the model parameter in the Hill

model and h0 is the carrying capacity for quorum sensing molecules. For quorum

sensing molecules, we assume their growth is regulated by the growth factor Q in the

form of a Hill model.

For the growth factor, the transport equation is proposed following a similar

approach,

∂(φsQ)
∂t

+∇ · (vφsQ) = ∇ · (φsDq∇Q) + cqφbs(1−
Q

q0
), (4.2.18)

where Dq is the isotropic diffusion rate, cq is the maximum production rate for the

growth factor and q0 is its carrying capacity. We assume that the growth factor

is mainly produced by the susceptible bacteria φbs since the persister bacteria are

metabolic inactive in the biofilm.

Continuity and momentum equation for the fluid mixture

To close this system, the governing equation for the averaged velocity v is given.

As an approximation, we assume it’s solenoidal. Then the continuity and the mo-

mentum equation are given, respectively, by

ρ(∂tv + v · ∇v) = ∇ · (φbτb + φpτp + φsτs)−∇p− γ1kbT∇ · (∇φn ⊗∇φn),

∇ · v = 0.
(4.2.19)

where p is the hydrostatic pressure and τb, τp and τs are the stress tensor induced

by the bacteria, EPS, and solvent in the biomass, respectively. The last term in
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the momentum equation is due to the spatial inhomogeneity of biomass distribution,

derived from the variation principle [130].

In this paper, we are interested in hydrodynamics, especially related to the growth,

of inhomogeneous biofilms, in which the dominating time scale is significantly larger

than the relaxation time scale in the biomass, especially, EPS. We therefore model

all components in the biomass as viscous fluids, i.e.,

τb = 2ηbDn, τp = 2ηpDp, τs = 2ηsDs, (4.2.20)

where ηb, ηp and ηs are the viscosity of the bacterial, EPS and effective solvent

component in the biomass, respectively. Here, the rates of strain tensors are defined

respectively by

Db = 1
2
(
∇vb +∇vTb

)
, Dp = 1

2
(
∇vp +∇vTp

)
, Ds = 1

2
(
∇vs +∇vTs

)
, (4.2.21)

where vb, vp and vs are the effective velocity for bacteria, EPS and solvent, respec-

tively, as defined in equation (4.2.9).

We note that, in this model, the motility and viscosity of each bacterial component

are assumed the same for simplicity although we can handle distinct viscosities and

motilities for different biomass components easily should the effect be identified by

experiments to be significant. In some cases, dead bacteria would be flushed out

along with the flow, which contributes to the heterogeneous structure in the biofilm,

but this depends on the choice of antimicrobial agents. In this study, we assume

the antibiotics would not change the viscosity of dead bacteria too much, thus dead

bacteria stay within the biofilm colony.

Boundary conditions

The boundary conditions are proposed depending on the physical situations we

intend to simulate. In this paper, our main goal is to simulate biofilm dynamics in a
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culture dish. Thus, we propose a boxed domain

Ω = [0, Lx]× [0, Ly]× [0, Lz], (4.2.22)

where Lx, Ly, Lz is the length in the x, y and z direction, respectively. In addition,

we assume the boundary conditions in both x and z direction are periodic. In the y

direction, no-flux boundary conditions for the biomass and functional molecules are

imposed, that’s,

[Pvφs −Dpφs∇P ] · n|y=0,Ly = 0, P = C,H,A,Q,

∇φi · n|y=0,Ly = 0, i = bs, bp, bd, p,

(vφi − λφi∇ δF
δφi

) · n|y=0,Ly = 0, i = bs, bp, bp, p.

(4.2.23)

In addition, we impose the non-slip boundary condition for the average velocity field

v|y=0,Ly = 0. We also impose a nutrient feeding condition c|y=Ly = c∗ in place of the

zero-flux condition.

Nondimensionalization

Let t0 denote the reference time scale and h0 denote the length scale, the variables

and parameters are nondimensionalized as follows,

t̃ = t

t0
, x̃ = x

h
, ṽ = vt0

h
, τ̃ = τt20

ρ0h2 , C̃ = C

c0
, Ã = A

d0
, H̃ = H

h0
, Q̃ = Q

q0
, (4.2.24)

where c0 h0, d0 and q0 represent the characteristic substrate concentration of nutri-

ent, quorum sensing molecules, antimicrobial agents and growth factor, respectively.

Then, the resultant non-dimensionalized parameters are summarized as follows

Λ = λρ0
t0
, Γ1 = γ1kT t20

ρ0h4 , Γ2 = γ2kT t20
ρ0h2 , ρ̃ = φs

ρs
ρ0

+ φb
ρb
ρ0

+ φp
ρp
ρ0
,

Res = ρ0h2

ηst0
, Reb = ρ0h2

ηbt0
, Rep = ρ0h2

ηpt0
,

c̃i = cit0, i = 2, 3, 4, 5, 12, c̃7 = c7t0
c0
, c̃8 = c8t0

A0
, c̃a = cat0

h0
, cq = cqt0

q0
,

b̃sp = bspt0, b̃ps = bpst0, r̃bs = rbst0, r̃bp = rbpt0, r̃a = rat0
A0
,

k̃11 = k11
H0
, k̃12 = k12

A0
, k̃2 = k2

c0
, k̃3 = k3

A0
.

(4.2.25)
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For simplify, we drop the tilde symbol ˜(•) for the parameters. The governing

equations with the non-dimensionalizsed parameters are given below

ρ(∂tv + v · ∇v) = ∇ · (φbτb + φpτp + φsτs)− [∇p+ Γ1∇ · (∇φn ⊗∇φn)],

∇ · v = 0,

∂tφbi +∇ · (φbiv) = ∇ · (Λφbi∇µbi) + gbi, i = s, p, d,

∂tφp +∇ · (φpv) = ∇ · (Λφp∇µp) + gp,

∂(φsP )
∂t

+∇ · (vφsP ) = ∇ · (φsDP∇P ) + gP , P = C,H,A,Q.

(4.2.26)

where

gbs = c2
Q2

k2
Q+Q2

k2
12

A2+k2
12

C
C+k2

(1− φbs
Smax

)φbs − bspφbs + bpsφbp − rbsφbs − c3A
A+k3

φbs,

gbp = c4
Q2

k2
Q+Q2

k2
12

A2+k2
12

C
C+k2

(1− φbp
Pmax

)φbp + bspφbs − bpsφbp − c12A
A+k3

φbp,

gbd =
(
rbs + c3

A
A+k3

)
φbs + c12A

A+k3
φbp − rdpk13

k13+Aφbd,

gp = c5(φbs + φbp) C
C+k2

H2

H2+k2
9
(1− φp

Emax
) + rdpk13

k13+Aφbd,

gC = −c7(φbs + φbp) C
C+k2

,

gA = −c8(φbs + φbp + φbd) A
k8+A − raA,

gH = cA
Q2

Q2+k2
Q
φbs(1−H),

gQ = cqφbs(1−Q).
(4.2.27)

Overall, we have 14 coupled PDEs in the governing system of equations.

Numerical results and discussion

Parameters and model calibration against experiments

All dimensional parameters used in this paper are summarized in Table 4.1. Some

parameters are chosen from published results in the literature, where the sources of

references are cited; others are determined by fitting experimental data obtained by

our experimental group [99]. In this paper, we use two characteristic time scales for

t0: (a). the growth time scale is set at t0 = 8.64 × 104 seconds (1 day) and (b). the
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time scale is set as t0 = 5 seconds when simulating the antimicrobial treatment. In

the following, all parameter values used in the numerical study are chosen from Table

4.1 unless noticed otherwise.

For a complex hydrodynamical model such as this, where many model parameters

are employed to describe the reactive kinetics, a good way to calibrate the model

parameters is by analyzing the reactive kinetics in a spatially homogeneous domain.

The experiment used in this paper to benchmark the model is a study conducted on

bacterial persistence to antimicrobial treatment in a multispecies biofilm at different

ages [99, 100]. To make our model comparable with the experiments, we make two

assumptions: (i). the biofilm thickness in the experiment is proportional to its volume

fraction and (ii). the experimental data can be described by the reactive kinetic

model where spatial transport is neglected. In the experiment detailed in [99], the

multi-species biofilm samples were grown from plaque bacteria on collagen-coated

hydroxyapatite discs in brain-heart infusion for time periods ranging from 2 days to

12 weeks. At each time period, ratios of bacteria killed by CHX for 1 min, 3 min or 10

min, as well as the control set, were measured, respectively. The experimental data

that we use in model calibration are customarily obtained by averaging over a spatial

domain in the samples. Therefore, they are suitable for the spatially homogeneous

reactive kinetics in the model. The comparison of numerical results governed by

reactive kinetics and the experimental data are shown in Figure 4.4, where model

parameters not available in the literature are fitted manually. It shows that our

model predictions agree quantitatively well with the experimental data collected [99].

The results show that mature biofilms are more resistant to CHX treatment than

young biofilms under normal conditions.

The experimentally calibrated model predicts that low concentration of the growth

factor leads to a small change in the killing ratio during the first two weeks, which

verifies the hypothesis made for the model that the low concentration of growth fac-
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tor can reduce the metabolism of young biofilms. However, when the concentration

of the growth factor reaches a threshold, bacteria become active and effective repro-

duction in cells as well as EPS ensue. In biofilm colinies, EPS builds a meshwork

to encapsulate the bacteria, some of which are anchored around the membrane of

bacteria while others form threads in the network. In mature biofilms, the densely

distributed EPS network can significantly slow down the penetration of antimicrobial

agents deep into the biofilm colony, and thereby effectively protect the bacteria from

antimicrobial treatment. This perhaps explains the apparent drop of killing ratio

in the second and third week in the experiments. After the first three weeks, the

structure of the biofilm becomes fairly stable due to the reduced nutrient supply and

weakened metabolism within biofilms. As the result, the killing ratio keeps within a

fairly stable range.

In the numerical investigation on the recovery of spatially heterogeneous biofilms

after antimicrobial treatment, we choose three-week-old biofilms after for 1 min, 3 min

and 10 min CHX treatment as initial conditions, respectively. We note that, in the

model system (both experimental and theoretical), post antimicrobial effects are due

to the residual antimicrobial agents left in the biofilm. The numerical results together

with the experimental data [100] are shown in Figure 4.5, where bacteria within the

biofilm can not be eradicated completely, even with a strong dose of antimicrobial

agents for a quite long time. Therefore, biofilm growth can relapse after antimicrobial

treatment ceases. This effect is interpreted as the existence of persister cells in the

biofilm by the model.

The model calibration determines the parameters in the reactive kinetic compo-

nent of the model. Our objective next is to use the hydrodynamic model developed

to simulate dynamics of heterogeneous biofilm growth, recovery after antimicrobial

treatment and biomass-drug interaction by coupling hydrodynamic transport. The

ultimate goal, of course, is to use the model to make sensible predictions for biofilm
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dynamics.

3D numerical simulations of biofilm recovery after antimicrobial

treatment

It has been known that morphological structures of biofilms affect the microbial

activity and biofilm function. To conduct numerical studies with spatially heteroge-

neous experimental data as the initial input, we must first reconstruct the biofilm

morphology from the experimentally acquired confocal laser scanning microscopy

(CLSM) images. This requires us to map the image data to 3D values of our model

variables. These converted 3D biofilm profiles are then used as initial conditions for

our numerical investigations. Readers, who are interested in the image analysis of

experimental biofilm data, please refer to Chapter 6 in [57].

Specifically, given an RGB CLSM image like the one in Figure 4.6(a), we use

the method given in the Appendix to reconstruct the morphological structure of live

bacteria and dead bacteria depicted in Figure 4.6(b) and Figure 4.6(c), respectively.

In the CLSM images shown in Figure 4.7, the dead bacteria are stained red and the

live ones green. At any given location, only the one with a larger volume fraction

is shown. These images are obtained in one of our experiments to show the biofilm

recovery process after antimicrobial treatment. These converted data will be used as

initial conditions in our numerical simulations in the following.

Numerically simulated growth of heterogeneous biofilms

We now investigate biofilm growth dynamics with a focus on structural hetero-

geneity using one of the experimentally acquired image data as the initial state.

We use the experiment data shown in Figure 4.7(b) and convert them into volume

fractions of susceptible bacteria, persisters, and dead bacteria, respectively. In this

simulation, we assume that the live bacteria consist of entirely susceptible bacteria
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initially, which is shown in Figure 4.8. In the simulation, a computational box/domain

is assigned to include the biofilm and sufficient amount of ambient fluid matrix on

top of the biofilm. The biofilm is assumed to grow on a solid substrate at the bot-

tom and the lateral sides while nutrient is supplied through the top boundary of the

computational box. Figure 4.8(a) depicts the initial distribution of the susceptible

bacteria in its volume fraction.

At the initial stage, the bacteria undergo a lag phase, in which there are no signif-

icant cell reproduction activities. This is the phase where the bacteria are still in the

process trying to adjust to the environment. We notice that the maximum volume

fraction of the susceptible cells drops initially by comparing the volume fraction in

Figure 4.8(a) with that in Figure 4.8(b). During this process, the growth factor is

produced and accumulated. When the concentration of growth factor Q reaches a

threshold, bacteria start to reproduce and so do quorum sensing molecules. Mean-

while, the conversion between various phenotypes (persister and susceptible bacteria)

begins (shown in Figure 4.8(f),) in which some susceptible bacteria convert into per-

sisters. As it is shown in Figure 4.8(g), EPS production is seen to increase as more

quorum sensing molecules are added to the biofilm system; in the meantime, some

dead bacteria begin to dissolve into EPS. At this stage, the biofilm is still not well-

developed as both persisters and EPS are still low in their respective volume fractions.

Later at t = 70, when the biofilm is well-developed, we observe that susceptible cells,

persisters and EPS reach their respective environmental carrying capacities and the

biofilm exhibits more heterogenous structures in space. By comparing Figure 4.8(o)

with 4.8(c), we note that the more quorum sensing molecules are there, the higher

is the EPS concentration, which confirms the regulating effect of QS on the EPS

production.
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Antimicrobial treatment of biofilms

Once biofilms are formed, antimicrobial agents are normally used as a chemical

means to treat them. Here, antimicrobial treatment of biofilms in heterogeneous set-

tings are numerically investigated using the multiphase hydrodynamic model. Figure

4.9 depicts the growth dynamics of a biofilm with the initial profile converted from

CLSM images of a three week old biofilm undergoing antimicrobial treatment for 3

minutes. The characteristic time scale used in this study is t0 = 5s. In these figures,

if there exist both live and dead bacteria in a single pixel, we plot the one with a

higher volume fraction. So, the bacterial type shown in the figure is the dominat-

ing phenotype. The bacterial distribution at a set of time slots is shown in Figure

4.9(a-e), where a disinfection process in a heterogeneous biofilm is undertaking. At

the marker of 2.5 minutes (t = 30), shown in Figure 4.9(g), most of the susceptible

bacteria are killed, while the volume fraction of persister does not change much. The

distribution of dead bacteria at t = 30 is shown in Figure 4.9(i). At the end of the

treatment, not only the bacterial distribution is highly heterogeneous, but also is the

concentration of antimicrobial agents (shown in Figure 4.9 (f).) From this numerical

simulation, we draw one conclusion that the residual concentration of antimicrobial

agents correlates strongly with the population of persistent bacteria and EPS spa-

tially (see Figure 4.9(h) and (f).) This is perhaps related to the slow penetration

of antimicrobial agents in the biomass as well as the consumption of antimicrobial

agents by persisters and EPS.

Biofilm recovery after antimicrobial treatment

From the experimental observation [100] as well as the theoretical study discussed

above, antimicrobial treatment of biofilms once may not eradicate biofilms completely

since some phenotype of bacteria, i.e. the persister, can still be alive after the treat-

ment. Thus, once dosing of antimicrobial agents ceases, the residual antimicrobial
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agents may lead to a relapse of biofilm growth.

In the study reported in [100], the portion of viable bacteria in multi species

biofilms after exposure to two preparations containing high concentrations of CHX

using CLSM and scanning electron microscopy (SEM) are quantitatively measured

over a period of time. In this paper, we use the 3D hydrodynamic model to predict the

recovery of the multi-species biofilm with heterogeneous structure after antimicrobial

treatment. A 3D numerical prediction of this recovery process is depicted in Figure

4.10. The initial profile of both live bacteria and dead bacteria are converted from

CLSM images of a biofilm after 3-minute treatment with CHX. In the subfigures

presented, plot the bacterial type with a higher volume fraction at any point in

space. The simulation agrees qualitatively well with the experiment, as shown in

Figure 4.7. The model prediction strongly supports the hypothesis that there exist

persisters in the biofilm which then leads biofilm relapse. The persister keeps in

a dominant state during the antimicrobial treatment since they are tolerant to the

severe environment when the concentration of antimicrobial agents is high. However,

when the concentration of CHX drops below a threshold such that it is no longer

fatal to the bacteria any more, the persister becomes metabolic-active and begins to

convert back into the susceptible cell to resume the cell reproduction. Figure 4.10

shows that bacteria grow in a relative slow process initially and eventually live bacteria

take over the entire domain leading to biofilm relapse (shown in Figure 4.10(e, f)).

This simulation documents the recovery process of a heterogeneous biofilm after CHX

treatment.

Strategies for disinfecting biofilms

As observed in the experiment [99] as well as verified through our calibrated model

prediction [100], younger biofilms are easier to be treated than the mature ones. In

order to investigate the underlying mechanism, we conduct a series of 3D numerical
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investigations on antimicrobial treatment of biofilms of different ages. One typical

comparative study is summarized in Figure 4.11, where 1-day old, 7-day old and 35-

day old biofilms are treated by antimicrobial agents for 3 minutes, respectively. The

initial biofilm profiles are taken from simulations in Figure 4.8 at time t = 1, 7, 35

respectively. The remaining biomass right after the treatment is plotted in Figure 4.11

for the three biofilm samples, respectively. As shown in Figure 4.11(a-d), bacteria

in the 1-day old biofilm is eradicated completely, i.e. no live bacteria after the 3-

min treatment is observed, whereas some live bacteria are still observed in the older

biofilms (the 7-day old and the 35-day old one) after the treatment (shown in Figure

4.11(e,f,i,j), respectively.) Interestingly, the susceptible bacteria in 7-day old biofilm

are nearly eradicated as depicted in Figure 4.11(e) while there still exist susceptible

bacteria in the 35-day old biofilm after the 3-min treatment. This is apparently due

to the protective nature of EPS in the older biofilm. With a thicker layer of EPS in

the 35-day old biofilm than in the 7-day old one, antimicrobial agents diffuse much

less effectively into the 35-day old biofilm than into the 7-day old one.

Therefore, it suggests that earlier treatment of a biofilm before it becomes mature

is much more effective in eradicating the bacteria in the biofilm than a late treatment.

In addition, the choice of antimicrobial agents for treating biofilms should be based

on the age of the biofilm. For young biofilms, antimicrobial agents that can make

the growth factor (necessary enzyme or extra cellular DNA) ineffective could be more

effective since it can suppress the growth of biofilms by trapping it in the lag phase,

where, according to [48], the conversion between the susceptible and the persister

cells is slow. However, once the biofilm becomes mature, antimicrobial agents that

can penetrate EPS protection layers better would have a better disinfecting effect.
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Conclusion

We have developed a multiphase hydrodynamic model for fluid-structure interac-

tion in biofilms to include interactions among various biomass components, quorum

sensing molecules and growth factors, as well as the structural heterogeneity using a

phase field formulation [130, 131, 114, 113, 64, 65]. A full 3D numerical solver based

on the hydrodynamic theory is developed and implemented on GPUs for simulating

biofilm hydrodynamics in a boxed geometry. This model is calibrated by a set of

related experiments on multispecies biofilms [99, 100].

The mechanisms behind biofilm growth and antimicrobial persistence are investi-

gated theoretically. The model assumes the existence of persisters in biofilms, which

is validated by the favorable comparison with the experiment. Through numerical

studies, we confirm that EPS prevents antimicrobial agents from penetrating into

the biofilm, which makes mature biofilms harder to be treated effectively by antimi-

crobial agents when compared with young biofilms. In addition, our model shows

that quorum sensing plays an important role in the biofilm formation and enhancing

antimicrobial persistence in mature biofilms. The biofilm recovery process after an-

timicrobial treatment is analyzed. The model predicts that treating biofilms at an

earlier age is much more effective in preventing biofilm relapse than at an older age.

Consequently, when the biofilm has grown older, antimicrobial treatment would not

be effective and biofilm could recover several weeks after the antimicrobial treatment.

Feeded with initial conditions from CLSM images of biofilm samples, our 3D hy-

drodynamic model can predict the spatial-temporal structure qualitatively well. By

taking the available CLSM data, we have investigated the biofilm growth dynamics

during and after the disinfection process. Given the spacial-temporal distribution of

biomass and functional molecules measured from CLSM data, our 3D biofilm solver

can be used to predict the future course of biofilm re-development. For future re-

search, we will further investigate the roughness, thickness, as well as the surface area
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of biofilm colonies through a combination of CLSM data and our 3D hydrodynamic

model prediction. Thus, this 3D predictive tool developed here provides a powerful

framework for further investigation of biofilm dynamics and the impact of functional

molecules as well as antimicrobial agents.
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Table 4.1: Values of dimentional parameters.

Symbol Description value Unit Reference
h Characteristic length scale 1 × 10−3 m [130]
t0 Characteristic time scale 5 or 8.64×104 s
Lx, Ly, Lz size of computational domain 1 − 2 × 10−3 m [130]
T Absolute Temperature 303 K [130]
γ1 Distortional energy coefficient 8 × 106 m−1 [130]
γ2 Mixing free energy coefficient 3 × 1017 m−3 [130]
χ Flory Huggins parameter 0.55 [130]
λ Mobility parameter 1 × 10−9 kg−1m3s
N Generalized polymerization 1 × 103 [130]
ρn Network density 1 × 103 kg m−3 [131]
ρs Solvent density 1 × 103 kg m−3 [131]
ηp, ηb Dynamic viscosity of biomass 10 kg/(ms)
ηs Dynamic viscosity of solvent 1.002 × 10−3 kg/(ms) [131]
Dc Nutrient diffusion coefficient 2.3 × 10−9 m−2s−1 [130]
Da AHL diffusion coefficient 2.3 × 10−10 m−2s−1 [107]
Dd Antimicrobial diffusion coefficient 2.3 × 10−9 m−2s−1 [107]
c0, h0, d0, q0 characteristic molecule concentration 8.24 × 10−3 kg m−3 [100]
c2 maximum growth rate for the susceptible 3 × 10−6 s−1 [100]
c3 maximum death rate for the susceptible 6.5 × 10−2 s−1 [100]
c4 maximum growth rate for the persister 3 × 10−7 s−1 [100]
c12 maximum death rate for the persister 6 × 10−4 s−1 [100]
c5 maximum EPS production rate 3.5 × 10−3 s−1 [100]
c7, c8 maximum nutrient or antimicrobial con-

sumption rate
1.0 × 10−7 s−1 [100]

cA QS molecule production rate 6 × 10−7 s−1 [100]
cq growth factor production rate 1.0 × 10−5 s−1 [100]
ra decaying rate of effective antibiotics 1 × 10−6 s−1 [100]
bsp, bps conversion rate 1.5 × 10−7 s−1 [100]
rbs natural death rate of susceptible bacteria 2 × 10−7 s−1 [100]
rdp dead bacteria recycling rate into EPS 2.2 × 10−6 s−1 [100]
Dpr Hinson constant 0.007 [100]
k3 Monod constant 3.5 × 10−3 kg m−3 [100]
k2, k8 Monod constant 3.5 × 10−4 kg m−3 [100]
k9 Monod constant 6.6 × 10−3 kg m−3 [100]
k12 Monod constant 6.0 × 10−7 kg m−3 [100]
kQ Monod constant 2.5 × 10−3 [100]
Smax carrying capacity for susceptible bacteria 0.08 [100]
Pmax carrying capacity for the persisters 0.018 [100]
Emax carrying capacity for EPS 0.15 [100]
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Figure 4.4: Model prediction and comparison with experiments. (a) Percentage of
dead bacterial cells at different times of biofilm recovery after being treated with CHX
for 1, 3 and 10 minutes, respectively. The dots are the experimental data and the
continuous curves are model predictions fitted to the experimental data. The bottom
curve is the one corresponding to the natural death in a controlled experiment. All the
experimental data are obtained from [28]. (b) The biofilm thickness in the controlled
experiment and the prediction of the model. The initial values of volume fractions of
various bacterial types and EPS, concentrations of nutrient, QS molecules, and growth
factors are given by (φbs, φbp, φbd, φp, C, A,Q,H) = (0.056, 0.024, 0, 0, 1.0, 0, 0, 0). (c)
The model predicted EPS volume fraction in the controlled experiment. (d) The
model predicted concentration of QS molecules in the controlled experiment. (e) The
model predicted concentration of growth factors in the controlled experiment. In the
controlled experiment, where biomass naturally grows, the biofilm thickness and the
EPS volume fraction are increasing functions of time that saturate at their respec-
tive plateaus after 25 days of growth; concentrations of QS molecules and growth
factors are monotonically increasing functions of time without showing an apparent
saturation at the end of the experiment.

70



www.manaraa.com

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Time (weeks)

L
iv

e 
B

a
ct

er
ia

 P
er

ce
n

ta
g
e

 

 

Control

CHX−1min

CHX−3min

CHX−10min

(a)

(b) (c)

Figure 4.5: Model prediction of biofilm recovery after antimicrobial treatment. This
figure shows live bacteria percentage over total bacteria, the concentration of antimi-
crobial agents in biofilms, and volume fractions of various bacteria types up to 8
weeks after the biofilm being treated with CHX. The initial profile is obtained from
a 3-week old biofilm in Figure 4.4. The concentrations of residual CHX are obtained
from the model prediction at t = 21 days with 1.67×10−4, 2.1×10−4 and 3.75×10−4

corresponding to CHX treatment for 1, 3, 10 minutes, respectively. The concentra-
tion of nutrient is set at 1 initially. (a) The percentage of live bacterial cell volume
in biofilms during recovery after treatment with CHX for 1, 3, 10 minutes and the
control set (without treatment), respectively. The longer the biofilm is treated with
CHX, the longer it takes for the residual bacterial cells to regain their populations.
(b) The concentration of the residual CHX as a function of time after the biofilm is
treated with CHX for 1, 3, 10 minutes, respectively. (c) The model predicted volume
fraction of the dead, susceptible and persistent cells after the biofilm being treated
with CHX for 1 minute.
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(a) (b) (c)

Figure 4.6: Reconstructing biofilm morphology through CLSM images. This figure
shows the original CLSM image intensity of the dead and live bacteria in a biofilm
and the ones that are reconstructed from the CLSM image. (a). The original CLSM
image in which dead bacteria are stained as red and live ones green. The blank region
in (b) and (c) is occupied by the live and dead bacteria, respectively. The dark region
in (b) represents that the region free of live bacteria and the dark one in (c) denotes
the region free of dead bacteria.

Figure 4.7: Biofilm recovery after 10-minute treatment with CHX-Plus. (a). A 3D
image of CLSM scans of a 3-week-old biofilm prior to the treatment. (b). The 3D
image after 10 minute treatment with CHX-Plus. (c). The biofilm is 1 week after the
treatment. (d). The biofilm is three weeks after the treatment. (e). The biofilm is
eight weeks after the treatment. The green fluorescence indicates viable live bacterial
cells and the red one indicates dead cells.
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(a) φbs at t = 0 (b) φbs at t = 1 (c) H at t = 70 (d) Q at t = 70

(e) φbs at t = 7 (f) φbp at t = 7 (g) φp at t = 7 (h) φbd at t = 7

(i) φbs at t = 35 (j) φbp at t = 35 (k) φp at t = 35 (l) φbd at t = 35

(m) φbs at t = 70 (n) φbp at t = 70 (o) φp at t = 70 (p) φbd at t = 70

Figure 4.8: Heterogeneous growth in a biofilm. This figure shows contour plot of
the volume fraction of susceptible, persistent and dead bacteria and concentrations
of EPS, growth factor, and QS molecules at selected time slot during the biofilm
growth. The initial condition of the simulation is converted from a CLSM biofilm
data set. (a) depicts the initial profile of susceptible bacteria, where the populations
of persisters and dead bacteria are assumed zero initially. (b) depicts the profile of
susceptible bacteria at t = 1. The distribution of quorum sensing molecules and
the growth factor at t = 70 are shown in (c) and (d), respectively. The profile of
biomass components: susceptible bacteria, persister bacteria, EPS and dead bacteria
at different times are shown in (e-h) at t = 7, (i-l) at t = 35, (m-p) at t = 70. The
characteristic time scale is set as t0 = 8.64× 104s.
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(a) Bacteria at t = 0 (b) Bacteria at t = 5 (c) Bacteria at t = 10

(d) Bacteria at t = 15 (e) Bacteria at t = 30 (f) 2D slice(y = 0.2) of d at t =
30

(g) φbs at t = 30 (h) φbp at t = 30 (i) φbd at t = 30

Figure 4.9: Various stages of antimicrobial treatment of a three-week old biofilm.
The initial biofilm morphology is reconstructed from a three-week-old CLSM biofilm
image. All components are assumed to have the same spatial distribution like the live
one in the experimental data set, with the initial volume fractions (φbs, φbp, φbd, φp) =
(0.08, 0.018, 0, 0.08). (a-e) show bacterial profiles at different times, where we use
green to represent the live bacteria and red the dead bacteria; (f) 2D slice (y = 0.2)
of the concentration of antimicrobial agents at t = 30; (g-i) the volume fraction of
each bacteria component at t = 30, respectively. The characteristic time scale is set
as t0 = 5s.
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(a) Bacteria at t = 0 (b) Bacteria at t = 7 (c) Bacteria at t = 14

(d) Bacteria at t = 21 (e) Bacteria at t = 35 (f) EPS at t = 35

Figure 4.10: Biofilm recovery after antimicrobial treatment. This shows that the sur-
vival bacteria of a biofilm treated by antimicrobial agents regrow into a new biofilm.
The initial biofilm morphology is reconstructed from the CLSM image of a 3 week old
biofilm after 3 minute CHX treatment, where we assume EPS has the distribution
proportional to that of the live bacteria and the initial volume fractions are given
by (φbs, φbp, φbd, φp) = (0, 0.01, 0.1, 0.1). The contours of all biomass component are
plotted. (a)-(e) shows the distribution of bacteria at t = 0, 7, 14, 21, 35, respectively,
where the red represents the dead bacteria and the green the total live bacteria,
including both persister and susceptible cells. (f). depicts the contour of the EPS
volume fraction at t = 35. The characteristic time scale is set as t0 = 8.64× 104s.
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(a) φbs at t = 36 (b) φbp at t = 36 (c) φbd at t = 36 (d) φp at t = 36

(e) φbs at t = 36 (f) φbp at t = 36 (g) φbd at t = 36 (h) φp at t = 36

(i) φbs at t = 36 (j) φbp at t = 36 (k) φbd at t = 36 (l) φp at t = 36

Figure 4.11: Antimicrobial treatment of biofilms at different ages. This simulation
shows that an older biofilm is more persistent to antimicrobial agents than younger
ones by comparing the remaining components of 1, 7 and 35 day old biofilms at
the end of a 3-minute treatment with antimicrobial agents. The phenomenon can
be explained by the existence of the persister and EPS network. The initial biofilm
profiles are taken from Figure 4.8 at time 1, 7, 35 days, respectively. The contour
of each biomass component at the end of 3-minute treatment by CHX is shown for
the 1 day old biofilm (a-d), the 7 day old biofilm (e-h), the 35 day old biofilm (i-l),
respectively. The characteristic time scale is set as t0 = 5s.
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Chapter 5

Mathematical Modeling and Simulations of

Eukaryotic Cell Morphology and Mitotic

Dynamics

In previous chapter, we have proposed hydrodynamic models to study biofilms,

which are micro-organism of bacteria, the major type of prokaryotic cells. In this

chapter, we switch our topic into eukaryotic cells. In particular, we focus on animal

cells. First of all, we give a brief introduction on the biological background, and a

overview of current mathematical models in the literature. Then we will propose

several hydrodynamic models to investigate the dynamics of animal cell morphology

and mitosis. Several qualitative patterns have been observed.

5.1 Background on cell morphology and mitotic dynamics

When attached on a substrate, the cell usually exerts a flat morphology. Before

mitosis (when a mother cell duplicates into two identical daughter cells), the cell would

undergo a drastic shape change, from essentially flat to round in a process known

as mitotic cell rounding (MCR). MCR has been proposed to facilitate organization

within the mitotic cell and be necessary for the geometric requirements of division

[104]. A typical experiment observation is shown in Figure 5.1, where we can observe

a spreaded cell rounds up in a time series.

The mechanisms in the molecular level is still unclear. In [53], the authors have

identified that moesin is activated and necessary to increase cortical rigidity and cell
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Figure 5.1: Mitotic cell rounding. This figure shows three time slots of cells on
a substrate, indicating spreaded cell rounding up from a flat morphology(see red
arrow). Images are courtesied from Maryna Kapustina from UNC.

Figure 5.2: A time line for a cell cycle.

rounding. In [70], the authors proposed that the mitotic increase in RhoA activity

leads to rearrangements of the cortical actin cytoskeleton that promote cortical rigid-

ity, resulting in mitotic cell rounding. In [105], the author has proposed that its is the

balance between globally outward osmotic pressure and locally inward actomyosin-

cortex-dependent surface tension.

After the cells round up, some of them would enter a cell cycle, where a parent

cell undergoes a sequence of intracellular transformations and eventually divides into

two or more offspring cells. For eukaryotic cells, the cell proliferation process is called

mitosis. The late stage of the cell mitotic process for eukaryotic cells, after the nu-

cleus has been dissolved and chromosomes have been separated, is called cytokinesis.

A cartoon showing the cell mitosis is given in Figure 5.2. Experimental observa-
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tions have provide us with a basic phase diagram of cell mitosis. For eukaryotic

cells, at the beginning of the cell mitotic process, the parent cell first duplicates its

genetic substances and then forms a mitotic spindle consisting of microtubules [75].

Through a cascade of signaling processes [78], the actin and myosin molecules un-

dergo a self-assembly process to remodel the cell cortex, an intracellular layer rich in

actin-filaments and myosin molecules located immediately adjacent to the cell mem-

brane [73]. In sync with the elongation of the mitotic spindle, more actin and myosin

molecules ascend to a ring like region in a plane roughly orthogonal to the axis of the

mitotic spindle to form the cytokinetic ring or contractile ring in the plane transverse

to the axis of the spindle. The plane is called the cleavage plane or division plane

[15]. As more actomyosin molecules are accumulated along the cytokinetic ring, a

contracting force is generated which points inward toward the axis of the spindle [73].

The contracting force pushes the membrane inward to create what is known as the

cleavage furrow on the membrane [87]. The contractile ring is a dynamic structure

within the cortex, in which F-actin and myosin-II are continuously assembled and

disassembled to maintain a roughly constant actomyosin molecular concentration as

well as a contracting force to squeeze the cell along the contractile ring.

In figure 5.3, the distribution of myosin II of a purple urchin zygotes during its

mitosis is shown. In Figure 5.4, the contractile ring made of F-actin is shown. In

particular, the F-actin orientation on the contractile ring is stained.

Recall we mentioned after mitotic cell rounding and before cell mitosis, cells are

usually in round shapes. However, if we zoom into a smaller length-scale, we can

observe that the morphology of cell is not smooth at all, but with small bleb-like

protrusions in smaller scale of 10-100 nm, compared with the cell radius 1-10 µm. as

shown in Figure 5.5. Notice the cell rounding dynamics happens in a quick manner

(approximate 30 seconds). There is little mass exchange between cytosol and extra-

cellular substance, i.e. the total volume of the single cell is approximately conserved.
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(a) Actomyosin Distribution during cytokinesis (b) Contractile Ring

Figure 5.3: Animal cell cytokinesis: (A) purple urchin zygotes during first mito-
sis, stained for DNA (green) and phosphorylated myosin II (magenta); (B) a car-
toon of actomyosin contractile ring and cleavage furrow. Images of (A) is from
http://php.med.unsw.edu.au/cellbiology/; Image of (B) is from [73].

However, as the rounded cell has less surface area than a flat one of the same volume,

there is excess surface area of the rounded cell, which leads to the dynamics of bleb-

like protrusions on cell membrane.

A review of existing mathematical models

In literature, there are some efforts [127, 108], though apparently, there is still

a gap in-between the numerical simulations and experiment observations. In [38],

the author has derived cell membrane model through a thermodynamical consistent

approach. In particular, a heuristic derivation for the phase field approximation of

the line energy and Gaussian bending energy is presented. Vesicle equilibrium states

at the minimum energy has been studied thoroughly by Udo Seifert in the series of

papers [91, 92] by studying either spontaneous curvature or bilayer-coupling models

[43, 6]. In particular, a phase diagram of shape transformation has been given. In

[66], the spontaneous tubulation of membranes induced by spontaneous curvature is

discussed. The budding dynamics by a Monte Carlo simulation is studied in [52]. For
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Figure 5.4: Arrangement of F-actin in the contractile ring. (A) an image of the
contractile ring at late anaphase; (B)tracing of F-actin shown in A; (C) a magnififed
image of (A); (D) a magnified image of (B). (Images are from [45])

(a) BliP (b) BliP

Figure 5.5: Cell bleb-like protrusion. (A) folding of the membrane-cortex couple as
visualized in TEM; (B) SEM of CHO cell after rounding. Experiment data is from
Kenneth Jacobson’s lab at UNC.

phase field modeling for cell membrane dynamics, Wang and Du [115] have proposed

a two-component phase field model for vesicle membrane. In [69], the author have

proposed a similar model, instead of having two components for membrane, they

propose and solve the surface mass conservation equation explicitly.
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5.2 Modeling the excess cell membrane stored in a complex morphol-

ogy of bleb-like protrusions

Mathematical model formation

In this section, we formulate a 3D phase field model for a cell immersed in a

buffer. The model is formulated in 3 space dimensions (3D), but it also restricts to

2D for purposes of modeling a planar projection or cell cross-section. The phase field

method is an alternative to sharp interface methods for composite materials with

distinct components separated by a diffuse boundary (a thin layer) whose shape and

evolution are part of the solution. For every pair of neighboring material components,

a phase field variable is introduced that interpolates between components over a fi-

nite thickness layer, called a diffuse interface. In our problem, we have three phases

(exterior buffer, cortex, interior cytosol) and two diffuse interfaces (lipid bilayer mem-

brane between buffer and cortex, cortex-cytosol transition layer). Figure 1 is a 2D

schematic of a 2D cell cross-section with individual components and diffuse interfaces

labeled.

We begin with the introduction of phase variables φi, i = 1, 2, 3 that denote

the volume fractions of phase 1 (the buffer), phase 2 (cortex) and phase 3 (interior

cytosol), respectively. Clearly in any pure phase i, the respective φi = 1, whereas

in diffuse interfaces between phases i and j, φi + φj = 1, with φk = 0, k 6= i, j, and

everywhere the total volume fraction is 1. Thus in the external buffer, φ1 = 1; in the

F-actin rich, cell cortical layer, φ2 = 1; and in the interior cytoplasm, φ3 = 1. (We

do not explicitly model the nucleus within the cytoplasm for this paper since we are

primarily concerned with a stationary rounded morphology.) The phase boundaries

are: the lipid bilayer membrane that separates the buffer and cortical layer, where

0 < φ1, φ2 < 1; and, the transition layer between the cortex and interior cytosol

where 0 < φ2, φ3 < 1. For graphical purposes and for matching 2D TEM and 3D
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Figure 5.6: Schematic for the cell-buffer phase field formulation: φ1, φ2, φ3 represent
volume fractions of the buffer, cortex and cytosol, respectively. The computational
domain is denoted as Ω. The cell lipid bilayer membrane is defined by the level set
φ1 = 1

2 and the interface between the cytosol and the cortex is defined by the level
set φ3 = 1

2 .

SEM images, the cell membrane surface is defined by φ1 = φ2 = 1/2, while the

cortex-cytosol surface is defined by φ2 = φ3 = 1/2. We do not allow all three phases

to come into contact for the purposes of this paper.

The buffer and interior cytosol are modeled as viscous fluids with specified vis-

cosities and the cortex is modeled as a nematic gel. The governing equations for the

three phases and two diffuse interfaces are presented next. The phase field method

is an energy-based variational theory, comprised of energy functionals for each phase

and diffusive interface, from which energy minimization governs evolution from initial

data.

Free energy

We denote the free energy of the cortex by Fp, where the subscript p is the ne-

matic director; the free energy for all interfacial tensions by FS, where S denotes

surface energies; and the free energy for the lipid bilayer membrane bending energy

by FB, where B denotes bending. The bilayer membrane and the F-actin cortex may

83



www.manaraa.com

be bound or tethered, modeled by an orientational anchoring condition that can be

tuned between parallel and normal alignment of the cortex, and with an energy cost

of membrane-cortex anchoring denoted by Fanch. The membrane surface area and the

cell volume are assumed to be known from experimental measurements of the spread

cell configuration and conserved in the transition from spread to rounded configura-

tion as discussed in the experimental section. The phase transport equations for the

phase variables in this paper are Cahn-Hilliard equations that ensure the conservation

of the volume of each component including the cell volume [12]. Therefore, the cell

volume is determined by the initial value in this model. To ensure conservation of

membrane surface area, we introduce an energy, FSA, that penalizes the departure

from the known membrane surface area. Putting these contributions together, the

total free energy is given by the sum:

F = FS + FB + Fp + Fanch + FSA. (5.2.1)

We now describe these energy terms in more detail. The interfacial surface energy

contributions are built into φ1 and φ2 at the buffer-cortex boundary (the lipid bilayer

membrane) and into φ2 and φ3 at the cortex-cytosol phase boundary. Each contri-

bution is modeled by a standard phase field approximation to the surface energy at

the interface, consisting of an energy penalty for conformational entropy together

with the Ginzburg-Landau double well potential whose two minima define the two

adjacent phases, and finally an energy term that penalizes coexistence of the three

phases:

FS =
∫

Ω

3∑
i=1

3
√

2γis
(
ε

2‖∇φi‖
2 + 1

ε
φ2
i (1− φi)2

)
+ γ123

2 Π3
i=1φ

2
i dx, (5.2.2)

where kB is the Boltzmann constant, T is the absolute temperature, γ1s and γ2s

contribute the bilayer membrane surface tension while γ2s and γ3s contribute surface

tension for the cortex-cytosol diffuse interface.
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Since the membrane is represented by either φ1 = 1
2 or φ2 = 1

2 in the phase field

formulation, the Helfrich bending elastic energy for the cell membrane is built into

the buffer (φ1) or cortex (φ2) phase variable, arbitrarily chosen as φ1 here, given by

FB =
∫

Ω
3
√

2γ1bε

(
∇2φ1 −

2
ε2φ1(φ1 − 1)(2φ1 − 1− ε√

2
C1)

)2

dx. (5.2.3)

where γ1b parametrizes the bending rigidity of the bilayer membrane. The function

C1 is the spontaneous curvature of the membrane, a key element of our model that

warrants discussion. C1 is a proxy for the concentration of membrane-cortex binding

proteins. Domains rich in binding proteins bind the membrane to the cortex, inher-

iting the mean curvature of the cortex. Domains free of binding proteins allow the

membrane to detach from the cortex and depending on the dimensions of the de-

tached domain, invaginations and bleb-like protrusions (BLiPs) form. In the absence

of detailed measurements of the regulatory binding protein species, we use either 2D

micrographs of the membrane morphology or 3D reconstructions of the membrane

morphology (see the next paragraph) to fit the spontaneous curvature function C1.

Note that the interplay between domains free of, versus rich in, the binding protein

species dictate the membrane morphology, which in turn dictates the spontaneous

curvature function C1. We choose the level set φ1 = 1/2 to define and match the

membrane morphology captured in 2D micrographs and reconstructed from 3D mi-

crographs.

The elastic energy associated with the (apolar) nematic gel model of the fila-

mentous actin cortex is described in terms of a direction p for the principal axis

of orientation, while ‖p‖ is allowed to vary between 0 for the isotropic phase and

1 for a perfectly aligned phase. p is called the nematic director and ‖p‖ is called

the nematic order parameter. The elastic energy of the cortex is then given by a

Frank-Oseen distortional energy together with a Landau-deGennes bulk free energy,

Fp =
∫

Ω

1
2φ

2
2

(
K

2 ‖∇p‖2 + h2

4 ‖p‖
4 − h1

2 ‖p‖
2
)
dx. (5.2.4)
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where: the prefactor φ2
2 restricts the nematic elastic energy to the cortex, K is the

Frank elastic constant (we assume the bend, splay and twist constants are equal

for this paper), controlling energy cost for orientational gradients within the actin-

rich cortical network; and h1, h2 are model parameters that control whether the

equilibrium phase of the cortex is nematic (0 < ‖p‖ ≤ 1) or isotropic (‖p‖ = 0).

In a spatially homogeneous state, where ∇p vanishes, the elastic energy for the

cortex favors stable minima of the bulk energy function: h2
4 ‖p‖

4 − h1
2 ‖p‖

2. The

stable minimizer of this function is given by the nematic state with order parameter

‖p‖ =
√

h1
h2

when h1 > 0 and by the isotropic state p = 0, when h1 ≤ 0.

The anchoring energy of the nematic cortex with the cell membrane is given by

Fanch =
∫

Ω

α1

2 (p · ∇φ1)2dx, (5.2.5)

where α1 parametrizes the strength of the anchoring potential, and α1 > 0 promotes

tangential anchoring while α1 < 0 promotes normal anchoring of the F-actin cortical

network with the membrane.

The surface area s0S
∗, with S∗ the surface area initially and s0 the excess surface

ratio, is enforced by an energy penalty for deviation of S(t) (the interior of the

φ1 = 1/2 level set). The energy penalty function is given by

FSA = 1
2λS(S(t)− s0S

∗)2, (5.2.6)

where λS weights this energy penalty and S(t) is the surface area at time t calculated

from the phase variable φ1 by:

S(t) =
∫

Ω
3
√

2
(
ε

2‖∇φ1‖2 + 1
ε
φ2

1(1− φ1)2
)
dx. (5.2.7)

We note that this variational energy model accepts the measured target for S∗,

and the membrane morphology images from micrographs are used to fit C1 in 2D or

membrane surface reconstructions in 3D, and then any initial guesses for S follow the

energy minimization dynamics toward the target surface area, while C1 guides the

membrane morphology toward that of the experimental micrographs.
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The full set of coupled model equations

By postulating the linear momentum balance and incompressibility of the material

system, the governing system of equations is

ρ(∂tv + v · ∇v) = −∇p+∇ · σ,

∇ · v = 0,

∂tφi +∇ · (vφi) = ∇ ·
(
λi∇( δF

δφi
− δF

δφ2
)
)
, i = 1, 3.

∂tp + v · ∇p−W · p = νD · p + 1
λp

h,

(5.2.8)

where h = − δF
δp is known as the molecular field in the liquid crystal community [34],

which represents a torque generated by the Frank-Oseen elastic energy, δF
δφi

is the

chemical potential with respect to φi, σ is the total extra stress, Wαβ = 1
2(∂βvα −

∂αvβ) is the vorticity tensor, Dαβ = 1
2(∂βvα + ∂αvβ) is the rate of strain tensor, ν is

a geometric parameter for the nematic gel, and λp is a rotational relaxation time for

the nematic director p. Here the total extra stress tensor consists of three parts:

σ = σr + σd + σe + σa, (5.2.9)

where σr is the elastic stress corresponding to the motion of the nematic director p, σd

is the viscous stress associated to the solvent in the system, σe is the Ericksen stress,

the stress associated to the elastic interfacial force due to molecular convection, and

σa is the active stress. They are given specifically by the following:

σr = −ν
2 (ph + hp) + 1

2(ph− hp),

σd = 2ηD,

σeαβ = (f −∑3
i=1 φi

δf
δφi

)δαβ −
∑3
i=1

∂f
∂(∂βφi)

∂αφi − ∂f
∂(∂βpγ)∂αpγ

σa = ζφ2φ3pp.

(5.2.10)

where η is the volume-averaged viscosity, η = φ1η1 + (φ2 + φ3)η2, with η1 buffer vis-

cosity and η2 cell viscosity. The divergence of the Ericksen stress yields the interfacial

forces:

∇ · σe = −(∇p) · h−
3∑
i=1

φi∇
δF

δφi
.
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With the free energy density functional given above, the various chemical poten-

tials are given by

µ3 = δF
δφ3

= δFS
δφ3

µ2 = δF
δφ2

= δFS
δφ2

+ δFp
δφ2
,

µ1 = δF
δφ1

= δFS
δφ1

+ δFB
δφ1

+ δFsurf
δφ1

+ δFanch
δφ1

,

h = − δF
δp = − δFp

δp −
δFanch
δp ,

(5.2.11)

where

δFS
δφi

= 3
√

2γisε (−∇2φi + f ′s(φi)) + γ123φiΠ3
j=1,j 6=iφj, i = 1, 2, 3,

δFB
δφ1

= 3
√

2γ1b (∇4φ1 − f ′b(φ1)∇2φ1 −∇2fb(φ1) + f ′b(φ1)fb(φ1)) ,
δFsurf
δφ1

= 3
√

2λSε (S(t)− S∗) (−∇2φ1 + f ′s(φ1)) .
δFp
δφ2

=
(
K
2 (∇p)2 + h3

4 ‖p‖
4 − h1

2 ‖p‖
2
)

δs
δφ2
.

δFanch
δφ1

= −α1∇ · ((p · ∇φ1)p) ,
δFp
δp = (−K∇ · (s∇p)− sh1p + sh3‖p‖2p)
δFanch
δp = α1(p · ∇φ1)∇φ1,

(5.2.12)

with fs(φ) and fb(φ) given by

fs(φ) = 1
ε2φ

2(1− φ)2, fb(φ) = 1
ε2φ(φ− 1)(2φ− 1 + ε√

2
C1). (5.2.13)

Numerical Results

Table of model parameters

Paramters used in this draft are summarized in Table 5.1. Paraters with references

for their order-of-magnitude are cited. Otherwise, thoese are model paramters, with

values by our best guesses.

Numerical simulations of cell blebing

Here we summarize some of the promising results of the numerical study for

cell wrinkling dynamics due to excess arch length or surface. A 3D simulation is
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Table 5.1: Dimensional and dimensionless parameters.

Symbol Description value Unit Reference and Remarks
h Characteristic length scale 1 × 10−5 m [108]
t0 Characteristic time scale 1 s [108]
ρ Cell density 1.1×103 kg/m3 [35]
η1, η2, η3 Averaged viscosity 10.0 N ·s/m2 10−3 −1 [108] for cytosol,100

[46] for cortex
γis Surface tension for the inter-

face
5 × 10−5 N/m [89]

γ1b Bending rigidity of cell
membrane

10−18 N ·m [102]

ε Thickness of the interface 5 × 10−7 m model parameter
λ1, λ3 Motility parameter 10−8 m3·s/kg model parameter
λp Time relaxation for the ne-

matic director p
1.0×106 s model parameter

s0 Excess surface area ratio 3.0 experiment measured
λS Lagrange multiplier for ex-

cess surface area constraint
2.0×105 N/m3 model parameter

K elastic strength for cell cor-
tex (Frank elastic cosntants)

10−11 N [129, 51]

h1, h3 Landau-deGennes nematic
potential parameters

2.× 102 N/m2 model parameter

α1 Parallel anchoring strength 10−11 N assume the same with K
ν Nematic director tumbling

parameter
1.2 rod-like flow aligning regime

provided in Figure 5.7 to demonstrate the capability of our model in predicting the

cell wrinkling dynamics both temporally and spatially. The excess volume ratio is

1:3. As Ken’s lab could not provide us with a quantitatively clear 3D cell morphology,

we have to propose a 3D virtual cell by ourselves. Here in Figure 5.7(a), the targeted

cell is shown. The time series of cell morphological change from a sphere to the target

cell are provided in Figure 5.7(b-f).

5.3 A hydrodynamic model for cytokinesis of eukaryotic cells

Mathematical formulations of mutli-phase models

In this section, we propose a hydrodynamic model for the cell division process in

a phase field formulation. In this model, we treat the cell and the surrounding liquid

environment as a fluid mixture in the form of a single fluid with multiple components.

The volume fractions of cytoplasm, nucleus and the buffer fluid outside the cell are
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(a) Target (b) t = 0 (c) t = 2

(d) t = 5 (e) t = 10 (f) t = 25

Figure 5.7: Simulation of cell wrinkling targeted at a 3D Cell provided by Alex. (a)
Cell generated by plugging some bulge on a spherical cell; (b) Initial profile of the
cell; (c-f) cell profile at time t = 0, 2, 5, 10, 25 correspondingly.

denoted by φ1, φ2 and φ3, respectively. For incompressible materials, we enforce

φ1 + φ2 + φ3 = 1. (5.3.14)

Here, we assume the buffer is a viscous fluid, so is the nucleus. Though the

cytoplasm can be treated as a viscoelastic fluid, in this paper, we also treat it as

a viscous fluid within the time scale of interest for simplicity. The cell membrane

(together with the cortical layer) is the level set defined by {φ1 = 1
2 = φ3} and the

membrane of the nucleus is the level set defined by {φ2 = 1
2 = φ1}. Notice that this is

a globally multi-phase while locally binary system since there is no contact between

nucleus and buffer at any time. The volume-average velocity, density and viscosity

for this fluid mixture is defined as

v =
3∑
i=1

φivi, ρ =
3∑
i=1

φiρi, η =
3∑
i=1

φiηi, (5.3.15)
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where vi, ρi, ηi is the effective velocity, density and viscosity for component i, i =

1, 2, 3. Figure 5.12 is a schematic cartoon of a 3D cell cross-section with individual

components and diffuse interface labeled.

For a given interface defined by the phase variable φ = 1/2, i=2,3, the unit normal

of the cell membrane and the nucleus membrane are denoted by n1, n2, respectively.

The mean curvatures of the cell membrane and nucleus membrane are denoted by

κ1, κ2, which can be approximated [109] by

ni = ∇φi
|∇φi|

, κi = ∇ · ni ≈
1
|∇φi|

(
∇2φi + 2

ε2φi(1− φi)(2φi − 1)
)
, i = 1, 2,

(5.3.16)

with ε representing the thickness of the nucleus membrane and cell membrane at

steady state. We note that ε is a model parameter which we can adjust.

Thermodynamic free energy

The free energy of this mixture system is proposed as

F =
∫

Ω
fdx, (5.3.17)

where Ω is the computational domain (in which the cell resides together with the

buffer fluid), and f is the free energy density function. There are different choices

for the free energy density function of the three phase fluids. Here we adopt a simple

one:
f = 1

2

(
γs1‖∇φ1‖2 + γs2‖∇φ2‖2 + γs3‖∇φ3‖2

+γ1φ
2
1φ

2
2 + γ2φ

2
2φ

2
3 + γ3φ

2
3φ

2
1 + γ4φ

2
1φ

2
2φ

2
3

)
.

(5.3.18)

An alternative is given by

f = 1
2

(
γs1‖∇φ1‖2 + γs2‖∇φ2‖2 + γs3‖∇φ3‖2

+γ1φ
2
1(1− φ1)2 + γ2φ

2
2(1− φ2)2 + γ3φ

2
3(1− φ3)2 + γ4φ

2
1φ

2
2φ

2
3

)
,

(5.3.19)

where γsi, i = 1, 2, 3, govern the strength of the conformational entropy between

different components, γ1, γ2, γ3 control the strength of the bulk/mixing energy for each
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pair of components, and γ4 is a Lagrangian multiplier to penalize the coexistence of

the distinct phases. Our numerical studies show that these two choices of free energy

density functions yield qualitatively the same results. Thus, in our study presented

in this paper, we choose the second, i.e. equation (5.3.19). We remark that more

features can be added to the model by augmenting the corresponding free energy.

Transport equations for biomass

Given the specific form of the free energy density (5.3.19), we assume that each

component in the fluid mixture is convected by the volume-averaged velocity as well

as transported via the gradient of osmotic pressure. Then, the transport equations

for each biomass component are given as follows

∂tφi +∇ · (vφi) = ∇ ·
 3∑
j=1

αij∇
δF

δφj

+ gi, i = 1, 2, 3, (5.3.20)

where δF
δφ i

are the chemical potentials of F with respect to φi, i = 1, 2, 3. Here (αij),

i = 1, 2, 3, j = 1, 2, 3, is the motility matrix and gi,i = 1, 2, 3, are the reactive terms,

respectively. Given specific free energy, saying (5.3.19), the chemical potentials could

be derived as

δF

δφi
= −γsi∇2φi + γiφi(1− φi)(1− 2φi) + γ4φiΠ3

j=1,j 6=iφ
2
j , i = 1, 2, 3. (5.3.21)

Note that the volume fractions add up to 1: ∑3
i=1 φi = 1 for incompressible

mixtures, as given by (5.3.15). This along with the Onsager reciprocal principle

implies [64, 65]
3∑
j=1

αij = 0, αij = αji. (5.3.22)

The off-diagonal mobility coefficients can be obtained from the diagonal coefficients

α12 = 1
2(α33 − α11 − α22), α13 = 1

2(α22 − α11 − α33), α23 = 1
2(α11 − α22 − α33),

(5.3.23)
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where we assume the diagonal motility parameters have the following form

αii = λiφi(1− φi), (5.3.24)

with λi representing the strength of motility parameters for the corresponding com-

ponent i, i=1,2,3.

By incompressibility condition, it follows that
3∑
i=1

gi = 0. (5.3.25)

At the onset of cell division, the parent cell normally increases in cytoplasmic and

organelle volume (the G1 phase) as well as increases in genetic materials (the G2

phase) right before the replication during the S phase. This process can be modeled

by proposing the reactive kinetics for the time rate of change in the volume fractions:

g1 = c1H1(t)φ1φ3 − c2H2(t)φ1φ2, (5.3.26)

g2 = c2H2(t)φ1φ2, (5.3.27)

g3 = −c1H1(t)φ1φ3. (5.3.28)

Here Hi(t), i = 1, 2, are Heviside functions defined by

H1(t) =


1, t < t1,

0, t ≥ t1,
H2(t) =


1, t < t2,

0, t ≥ t2,
(5.3.29)

where t1 is the critical checkpoint, at which the parent cell has just duplicated its

volume, t2 is the critical checkpoint, at which the nucleus has doubled its volume.

Thus, before t1 the parent cell keeps reproducing its cytoplasm to expand volume.

After it doubles its volume, reproduction of cytoplasm ceases and cell proliferation

begins. The growth kinetics is assumed to be originated from the interface between

the buffer and cytoplasm as well as the nucleus and the cytoplasm.

Although our formulation in equation (5.3.20) is consistent, in real numerical

simulations, we don’t need to calculate every single phase due to the incompressibility

constraint. In our later discussion, we only keep track of the transport of φ2 and φ3,

since φ1 can be obtained through the incompressibility condition (5.3.14).
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Continuity and momentum equation

In order to close this system, we need to supplement the system with the continuity

equation and momentum equation for the fluid mixture. By assuming the average

velocity in the fluid mixture solenoidal, we have

ρ(∂tv + v · ∇v) = −∇p+∇ · τ + Fe, (5.3.30)

∇ · v = 0, (5.3.31)

where ρ is the volume-averaged density (5.3.15), p is the hydrostatic pressure and τ

is the viscoelastic stress tensor and Fe is the elastic body force yielding the surface

tension of the cell membrane and the contractile force due to actin-myosin filaments.

The viscoelastic stress tensor is proposed as follows,

τ = 2ηD + τe, D = 1
2

(
∇v +∇vT

)
(5.3.32)

where the first term 2ηD sums up the viscous stress from each component with D the

rate of strain tensor, and the second term τe is the elastic stress for the cytoplasm.

Here η is the volume-averaged viscosity given in (5.3.15). A constitutive equation

could be proposed for τe relating to the specific structure of the cortex layer. In this

paper, however, we set τe = 0 for the time scale of our interest and simplicity.

For the elastic body force or the interfacial force Fe, we adopt the surface force

yielded by the variation of the free energy. In addition, we propose a proxy force

mimicking the cytokinetic ring, a contractible ring responsible for the cytokinesis of

the animal cell, which is similar to the one used in [60],

Fe =
3∑
j=1

δF

δφj
∇φj + κ1fd1φ1∇φ1 + κ2fd2φ2∇φ2, (5.3.33)

where the first term is the interfacial force, due to the material change at the interface

between each component and the second term is the proxy force mimicking the normal

force generated by the cytokinetic ring, consisting of actomyoisn networks immediate
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within the cell membrane. We note, this proxy force provides the contractible force

necessary for dividing the cell. As we alluded to in the introduction, we will leave

the model of tracking the spatial distribution of actin-filament networks regulated by

myosins in the cytokinetic ring for a future work. Here κ1, κ2 are the mean-curvature

of the cell membrane and nucleus membrane as given in (5.3.16), and fdi, i=1,2

denote the strength of the cytokinetic ring force, which by following the idea in [60]

are proposed as follows

fd1 = Hd1(φ2, t) γd1
||x−c1|−|x−c2||+εd

,

fd2 = Hd2(φ3, t) γd2
||x−c1|−|x−c2||+εd

,
(5.3.34)

where

Hd1(φ2, t) =


0, otherwise,

1, φ2 = 0 & t > t3.

Hd2(φ3, t) =


0, otherwise,

1, φ3 = 0 & t2 < t < t3.

(5.3.35)

are heaviside functions to restrict the force on cell membrane and the nucleus mem-

brane at different stages of the cell division process, respectively, and c1 and c2 are

the mass centers of the separated nuclei, respectively, i.e.,

c1 =
∫
Ω1
φ2(x)xdx∫

Ω1
φ2(x)dx , c2 =

∫
Ω2
φ2(x)xdx∫

Ω2
φ2(x)dx , (5.3.36)

where Ω1 and Ω2 are the domains occupied by the two nuclei, γdi, i = 1, 2 are two

parameters characterizing the strength of fdi, respectively, and εd is a small number

employed here to avoid the singularity of fdi, where we use 0.01 in the paper. Here,

t2 is the checkpoint for the nucleus to begin separating after the size of the cell has

been doubled and t3 is the critical checkpoint when the nucleus has been divided into

two separate nuclei.

Notice that this cytokinetic ring force counters the force due to the one of surface

tension along the cytokinetic ring. We did not incorporate this cytokinetic ring
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force into the thermodynamic free energy since this is a proxy for the active force

generated by actin-myosin filament on the cytokinetic ring through the released of

the hydrolyzed ATP. In the current context, it is not a potential force.

Dimensionless governing equations in the three phase model

We denote the reference time scale as t0, reference length scale as h and reference

mass density as ρ0. Then, the variables and parameters are nondimensionalizsed as

follows:
ρ̃i = ρi

ρ0
, x̃ = x

h
, t̃ = t

t0
, ṽ = vt0

h
, λ̃i = λi

t0
, c̃j = cjt0,

γ̃si = γsikT t
2
0

ρh4 , γ̃k = γkkT t
2
0

ρ0h2 , Rei = ρ0h2

ηit0
,

(5.3.37)

with i = 1, 2, 3, j = 1, 2, and k = 1, 2, 3, 4. For convenience, we drop those tildes on

the symbols. The governing equations in dimensionless form are summarized as

ρ(∂tv + v · ∇v) = ∇ ·
(

1
Re

(∇v +∇vT )
)
−∇p+ Fe,

∇ · v = 0,

∂tφi +∇ · (vφi) = ∇ · (∑3
j=1 αij∇ δF

δφi
) + gi, i = 1, 2, 3,

(5.3.38)

where

Fe = ∑3
j=1

δF
δφj
∇φj +∑2

i=1 κifdiφi∇φi,

g1 = c1H1(t)φ1φ3 − c2H2(t)φ1φ2, g2 = c2H2(t)φ1φ2, g3 = −c1H1(t)φ1φ3,

1
Re

= ∑3
i=1 φi

1
Rei
, ρ = ∑3

i=1 φiρi.

(5.3.39)

Numerical results and discussion

Parameters and initial setup

For convenience, all parameters used in the model are listed in Table 5.2 unless

noticed otherwise. These parameters are chosen from the published literature or user-

defined based on our best guesses. We note that, although we have formulated the

three-phase model by treating the nucleus separately as a new phase for eukaryotic
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Table 5.2: Dimensional parameters.

Symbol Description value Unit Reference
T Absolute Temperature 303 Kelvin [130]
k Boltzmann constant 1.38 × 10−23 m2kg/(s2K) [130]
h Characteristic length scale 5 × 10−5 m [83]
t0 Characteristic time scale 0.1 s [83]
ρ Reference density 1.1 × 103 kgm−3 [35]
η1 Dynamic viscosity of cytoplasm 1 × 10−2 kgm−1s−1 [44]
η3 Dynamics viscosity of ECM 5 × 10−3 kgm−1s−1 [44]
η2 Dynamics viscosity of nucleus 2 × 10−2 kgm−1s−1

γA,B,C Distortional energy coefficient 2.5 × 107 m−1

γ1,2,3,4 Bulk free energy coefficient 1.875 × 1020 m−3

λ1,2,3 Motility parameter for each component 1 × 10−11 kg−1m3s
c1, c2 Growth rate of cytoplasm and nucleus 5.0 s−1

γd1 Stimulating force strength 2.5 m−3

γd2 Stimulating force strength 15 m−3

cells, this model is also well-suited for studying cytoplasmic dynamics and cytokinesis

without considering the nucleus. In those cases, we simply set the initial condition

of φ2 as zero and assume that c1 and c2 are the centers of mass for the cytoplasm

distributed on each side of the division plane, respectively. In this two phase model,

φ1 represents the volume fraction of the substance inside the cell membrane and φ3

represents the volume fraction of the buffer, i.e. extra cellular matrix (ECM) outside

of the cell membrane.

Dynamics of cell growth and cytokinesis

During the cell mitotic process and before cytokinesis ensues, the parent cell dou-

bles its cytoplasmic volume while in the meantime duplicates its genetic substances

(DNAs and chromosomes). The cell morphological change during this process can be

studied using the current model by simply shutting down the contracting force and

switch on the growth dynamics of the cell, which are characterized by the moments

known as the checkpoints present in the current model. At the molecular level, the

DNAs and chromosomes replicate themselves and then separate into two distinct sets

of DNAs and chromosomes. Immediately following, two offspring nuclei form, each

of which contains the genetic information inherited from the parent cell. This is a
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complex process involving the formation of mitotic spindle and its elongation in the

axis perpendicular to the cytokinetic ring, which is beyond the scope of our current

multiphase model’s. In the current model, we focus on cytokinesis after the offspring

nuclei are separated. We coarse-grain the nucleus as a viscous bulk fluid inside the

cytoplasm. After the two offspring nuclei are separated, the nuclei effectively position

the division plane, known as the cleavage plane, after which cytokinesis ensues. When

the cleavage plane is placed right in the middle of the long axis of the cell, symmetric

cell division can be observed. Otherwise, cytokinesis may result in asymmetric divi-

sion or failure of cytokinesis. We will discuss the case of asymmetric division later,

but will not discuss the failure of cytokinesis since its cause is not fully explored yet

even experimentally.

In Figure 5.13, we show a detailed simulation of cytokinesis for eukaryotic cells

mentioned above. In particular, the 3D view of the cell growth and division process

is portrayed in Figure 5.13(a-e). The volume of the cytoplasm is doubled at the

moment shown in Figure 5.13(b), after which we see the formation of the cleavage

furrow in Figure 5.13(c), and the abscission that physically cleaves the parent cell

into two offspring cells in Figure 5.13(d). In Figure 5.13(e), we observe the offspring

cell reshapes into round morphology under the influence of surface tension on its own

membrane. To our best knowledge, this is the first numerical simulation in full 3D

using a hydrodynamic phase field model. To better visualize the dynamics of nucleus

in the cytokinesis process, a series of 2D slices at x = 0.5 are plotted in Figure 5.13(f-

j). In particular, the cytoplasmic bridge connecting the two offspring cells is observed

(shown in Figure 5.13(i)), which agrees quantitatively with the morphogenetic pattern

obtained from the experimental observations shown in Figure 5.13(k).

We note that the advantage of the 3D hydrodynamic model is its capability to

couple the interior cytoplasmic fluid flow with the exterior fluid flow through the

cell membrane and visualize important hydrodynamic quantities such as stress ten-
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sors, forces and the hydrostatic pressure throughout the domain during the cellular

morphological transformation. In Figure 5.14, the detail of the viscous stress ηD,

volume-averaged velocity v, as well as the hydrostatic pressure p at time t = 8.5 are

depicted. The stress tensor at (x, t) is visualized as a 3D ellipsoidal object at x, whose

semiaxes signify the length of the three eigenvalues of the second order symmetric

tensor, respectively. From Figure 5.14(b), a zoomed view of viscous stress tensor is

shown. The stress is highly inhomogeneous at the contractile ring on the division

plane (cleavage plane), which correlates well with the velocity field shown in Figure

5.14(f-g), as the cytokinetic ring of the cell is contracting. Besides, the gradient of

the hydrostatic pressure is also high at the cleavage plane as well as the interface

between the cell nucleus and cytoplasm.

In addition, the distribution of the proxy force and the surface tension force are

also shown in Figure 5.15. Seen from Figure 5.15(a), the proxy force is mainly dis-

tributed on the cell membrane (the interface between cytoplasm and ECM), with

much higher values on the division plane, contracting the cell membrane towards the

center of the long axis of the cell. This is shown in the 2D view of proxy force in Fig-

ure 5.15(b-c). Same as the proxy force, the surface tension force is also distributed on

the interfaces. However, surface tension is more evenly distributed, aiming to smooth

out the interface. These two forces oppose to each other on the interface. It is the

competition between the surface tension force and the proxy force on the division

plane that ultimately contributes to the success of cytokinesis.

Asymmetric cell cytokinesis

The positioning of the contractile ring (or cytokinetic ring) located on the division

plane is dictated by the mitotic spindle and other intracellular processes. It can affect

the morphology of the offspring cells significantly. If the contractile ring is positioned

not in a symmetric manner, then asymmetric cell division, or cell polarization could be
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observed. Asymmetric cell division, which includes cell polarization and cytokinesis

is essential for generating cell diversity during development.

Here, we conducted two case studies, where we only concentrate on the cell mem-

brane dynamics by setting φ2 = 0. Note in this case, c1 and c2 in the model are

chosen as mass centers of the half cell divided by the cleavage plane. For the first

numerical study, we choose the contractile ring on the plane at x = 0.9 with Lx = 2.0

for the whole domain. An asymmetric cell division is simulated shown in Figure 5.16.

The asymmetric cell division in the intermediate stage resembles qualitatively to the

budding yeast polarization.

Another case of asymmetric cell division is due to the fact that the concentration of

actin-myosin filament is distributed heterogeneously during cytokinesis. As a simple

experiment, we set γd1, the contractile strength as a function of space, to mimic this

inhomogeneous contractile force due to the heterogeneous distribution of actin-myosin

filaments on the division plane. In this context, we set γ̃d1 = γd1y, i.e. the strength of

the contractile force is higher on upper membrane of the cell. As a result, a plane-cell

type asymmetric cell division can be observed, shown in Figure 5.17. The cleave

furrow is observed in Figure 5.17(h), which agrees qualitatively with the cleavage in

the jellyfish aequorea.

Conclusion

In this section, we use a multi-phase field model to study cytokinesis of an eukary-

otic cell during its mitotic process. Several interesting phenomena such as dynamics

and morphological patterns of symmetric or asymmetric cell division in cytokinesis

are numerically simulated with the model. These morphological patterns agree qual-

itatively with experimental observations. This simplified model is thus proven to be

an effective tool for studying cytokinesis during the cell division process.

Evidently, this simplified model needs significant improvement in order to make
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it capable to simulate the complex biological and chemical processes in addition to

the mechanical process during the real cell mitotic process. Nevertheless, it marks

our first attempt in developing a full 3D hydrodynamic model for cell division in a

hydrodynamically consistent way. Within the framework for modeling cell dynam-

ics that the model has provided, we can further superimpose additional features to

it or add additional cellular components/structures to it. In our future work, we

will incorporate the actomyosin microstructure to the cell cortical layer and derive

the contractile force on the cytokinetic ring based on their density and orientation

distribution instead of using the proxy force. In addition, the viscoelastic proper-

ties of cytoplasm, the chromosome spindle, as well as its elongation on facilitating

cytokinesis could be added incrementally as well.

101



www.manaraa.com

(a) Target (b) Steady state cell morphology

(c) cortex 2D slice at z = 0.5 (d) cortex 2D slice at y = 0.5 (e) cortex 2D slice at x = 0.5

(f) 2D slice of p at z = 0.5 (g) 2D slice of p at y = 0.5 (h) 2D slice of p at x = 0.5

Figure 5.8: Simulation of cell blebbing. (a) targeted cell morphology generated by
Alex; (b) stead state cell morphology predicted by our model; (c-e) 2D slice views of
the cytosol at z = 0.5, y = 0.5 and x = 0.5, respectively; (f-h) 2D slice view of the
pressure at z = 0.5, y = 0.5 and x = 0.5, respectively. The unit for pressure is Pa.
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(a) 3D view of Cortex Arrangement (b) 2D slice at x = 0.5

(c) 2D slice at y = 0.5 (d) 2D slice at z = 0.5

Figure 5.9: Arrangement of filaments in cortex for the steady state cell morphology.
(a) 3D view of the cortex arrangement; (b-e) 2D slice views of the cortex at x = 0.5,
y = 0.5, z = 0.5, respectively.
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(a) first invariant at z = 0.5 (b) first invariant at y = 0.5 (c) first invariant at x = 0.5

(d) second invariant at z = 0.5 (e) second invariant at y = 0.5 (f) second invariant at x = 0.5

(g) third invariant at z = 0.5 (h) third invariant at y = 0.5 (i) third invariant at x = 0.5

Figure 5.10: Three invariants for stress tensor τ e. (a-c) 2D slices of the first invariant;
(d-f) 2D slices of the second invariant; (g-i) 2D slices of the third invariant. The unit
for first invariant is Pa, second invariant is Pa2, third invariant is Pa3.
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(a) first invariant at z = 0.5 (b) first invariant at y = 0.5 (c) first invariant at x = 0.5

(d) second invariant at z = 0.5 (e) second invariant at y = 0.5 (f) second invariant at x = 0.5

(g) third invariant at z = 0.5 (h) third invariant at y = 0.5 (i) third invariant at x = 0.5

Figure 5.11: Three invariants for stress tensor τ r. (a) the cell morphology; (b) the
first invariant of τ r; (c) the second invariant of τ r; (d) the third invariant of τ r.The
unit for first invariant is Pa, second invariant is Pa2, third invariant is Pa3.
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Figure 5.12: A schematic cartoon for the phase-field cell model. Ω represents the
computational domain. Here φ1, φ2, φ3 represent the volume fractions of cytosol,
nucleus, and cell buffer, respectively. The nucleus membrane is traced by φ1 = φ2 = 1

2
and the cell membrane is traced by φ1 = φ3 = 1

2 .
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Figure 5.13: Cell growth and cytokinesis. This figure shows a parent cell duplicates
its nucleus and cytoplasm, then splits into two identical offspring cells. (a)-(e) 3D
Numerical simulations of the cell division process at different stages; (f-j) 2D slices
at x = 0.5 for the cell division process; (k) a dividing melanoma cell just before it
divides into two offspring cells completely (Courtesy of Welcome Images).
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(a) ηD (b) Zoom view of ηD

(c) ηD at x = 0.75 (d) Zoom view of ηD at x =
0.75

(e) ηD at z = 0.5

(f) v at x = 0.75 (g) v at z = 0.5 (h) p at x = 0.75

Figure 5.14: Hydrodynamic variables of cell cytokinesis at t = 8.5. This figure shows
the hydrodynamic variables, including viscous stress tensor βD, volume-averaged ve-
locity v and the hydrostatic pressure p distribution at time t = 8.5 for the simulation
shown in Figure 5.13. (a) 3D view of the stress tensor as ellipsoids; (b) a zoomed
view of the stress tensor; (c-e) 2D slices of the stress tensor field; (f-g) 2D slices of
the velocity filed; (h) a 2D slice of the pressure field.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Visualization of the proxy force and the surface tension force. This figure
shows the proxy force and surface tension force at time t = 8.5 of the simulation shown
in Figure 5.13.(a) 3D view of the proxy force; (b) a 2D slice of proxy force at x = 0.5;
(c) a 2D slice of proxy force at z = 0.5; (d) 3D view of the surface tension force;
(e) a 2D slice of the surface tension force at x = 0.5; (f) a 2D slice of the surface
tension force at z = 0.5. The proxy force opposes to the surface tension force at the
cytokinetic ring.
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(a) t = 0 (b) t = 5

(c) t = 10 (d) t = 18

(e) t = 0 (f) t = 5 (g) t = 10

(h) t = 18 (i)

Figure 5.16: Asymmetric cell division due to the asymmetric positioning of cleavage
plane. This figure shows an asymmetric cell cytokinesis process in which the division
plane is positioned in an asymmetric fashion along the long axis of the cell. (a)-(d) 3D
Numerically simulated cell division process at different time; (e-h) 2D slices (z = 0.5
) of cell division process at different time; (f)a budding yeast. This asymmetric cell
division resembles the yeast cell budding process (found on ppdictionary.com).
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(a) t = 0 (b) t = 10

(c) t = 15 (d) t = 20

(e) t = 0 (f) t = 10

(g) t = 15 (h)

Figure 5.17: Asymmetric cleavage furrow formation due to inhomogeneous acto-
myosin distribution. This figure shows the asymmetric cleavage furrow formation
due to the inhomogenous contractile force along the cytokinetic ring induced by het-
erogenous actomyosin distribution on the contractile plane. (a-d) 3D view of the
asymmetric cell division at different time; (e-g) 2D slices (z = 0.5) of the asymmetric
cell division at different time; (h) cleavage furrow in the jellyfish Aequorea (found on
celldynamics.org).
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Chapter 6

Conclusion

In this thesis, we have developed a general framework for deriving thermodynam-

ically consistent hydrodynamic models, following the generalized Onsager’s principle

[79, 80]. This modeling approach is effective and systematical, as we have shown

that many widely-used hydrodynamic models are actually special cases of the general

model.

As the hydrodynamic models are usually high-order, nonlinear and always cou-

pled, new efficient and stable numerical schemes are needed. Guided by the continu-

ous energy dissipation law, we propose linearly, energy-stable, semi-discrete schemes

for several particular cases of the general hydrodynamic model [139, 143, 141, 140].

Then, the space is discretized by central-differences and the discrete scheme is imple-

mented using CUDA on GPUs for high-performance computing.

Using the general modeling framework, we have proposed several hydrodynamic

models to investigate cellular dynamics, in particular, (i) antimicrobial persistence

in biofilms; (ii) animal cells cytokinesis. By treating the biofilm as a complex fluid

mixture, we have developed a modeling framework and computational tool to study

biofilm dynamics and functions using both kinetic and continuum approaches. The

bacteria in biofilms have been categorized into various types either by their persis-

tence to antimicrobial agents or by their reactions to quorum sensing molecules. Using

these models and the accompanying computational tools, we have studied dynamics

of 3D heterogeneous biofilm formation under hydrodynamic stress, investigated the

pros and cons of quorum sensing mechanism in hydrodynamic environment [136], ex-
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plored the mechanism of antimicrobial persistence [137], looked into optimal dosing

strategies, and examined the cell motility on the development of biofilm morphol-

ogy. As an integral part of the study, we have also validated our model of biofilm

persistence to antimicrobial treatment against the experimental results obtained in

Dr. Ya Shen’s laboratory [100]. Using the validated model, we then probe the sce-

nario of biofilm relapse after the antimicrobial treatment [142]. These studies have

demonstrated that our models are effective for analyzing the mechanism of biofilm

formation and functions.

In a similar manner, we treat the animal cell together with its buffer outside of

the cell membrane as a viscoelastic fluid mixture. Using the general modeling ap-

proach mentioned above, we have developed a modeling framework for simulating the

space-time evolution of cell morphology change: bleb-like protrusions [144], mitotic

cell rounding from a flat configuration on the substrate [138], cell motility and cell

cytokinesis [135, 134]. The simulation results from the hydrodynamic models have

shown some qualitative agreement with experiment observations.
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